首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal and metal oxide chelating-based phosphopeptide enrichment technologies provide powerful tools for the in-depth profiling of phosphoproteomes. One weakness inherent to current enrichment strategies is poor binding of phosphopeptides containing multiple basic residues. The problem is exacerbated when strong cation exchange (SCX) is used for pre-fractionation, as under low pH SCX conditions phosphorylated peptides with multiple basic residues elute with the bulk of the tryptic digest and therefore require more stringent enrichment. Here, we report a systematic evaluation of the characteristics of a novel phosphopeptide enrichment approach based on a combination of low pH SCX and Ti(4+)-immobilized metal ion affinity chromatography (IMAC) comparing it one-to-one with the well established low pH SCX-TiO(2) enrichment method. We also examined the effect of 1,1,1,3,3,3-hexafluoroisopropanol (HFP), trifluoroacetic acid (TFA), or 2,5-dihydroxybenzoic acid (DHB) in the loading buffer, as it has been hypothesized that high levels of TFA and the perfluorinated solvent HFP improve the enrichment of phosphopeptides containing multiple basic residues. We found that Ti(4+)-IMAC in combination with TFA in the loading buffer, outperformed all other methods tested, enabling the identification of around 5000 unique phosphopeptides containing multiple basic residues from 400 μg of a HeLa cell lysate digest. In comparison, ~ 2000 unique phosphopeptides could be identified by Ti(4+)-IMAC with HFP and close to 3000 by TiO(2). We confirmed, by motif analysis, the basic phosphopeptides enrich the number of putative basophilic kinases substrates. In addition, we performed an experiment using the SCX/Ti(4+)-IMAC methodology alongside the use of collision-induced dissociation (CID), higher energy collision induced dissociation (HCD) and electron transfer dissociation with supplementary activation (ETD) on considerably more complex sample, consisting of a total of 400 μg of triple dimethyl labeled MCF-7 digest. This analysis led to the identification of over 9,000 unique phosphorylation sites. The use of three peptide activation methods confirmed that ETD is best capable of sequencing multiply charged peptides. Collectively, our data show that the combination of SCX and Ti(4+)-IMAC is particularly advantageous for phosphopeptides with multiple basic residues.  相似文献   

2.
Immobilized metal affinity chromatography (IMAC) and metal oxide type affinity chromatography (MOAC) techniques have been widely used for mass spectrometry-based phosphorylation analysis. Unlike MOAC techniques, IMAC requires rather complete removals of buffering reagents, salts and high concentrations of denaturant prior to sample loading in order for the successful enrichment of phosphopeptides. In this study, a simple off-line capillary column-based IMAC phosphopeptide enrichment method can shorten sample preparation time by eliminating the speed-vac step from the desalting process. Tryptic digest peptide samples containing 2M urea can be directly processed and the entire IMAC procedure can be completed within 6 h. When tryptic digest peptide samples prepared from mouse whole brain tissues were analyzed using our method, an average of 249 phosphoproteins and 463 unique phosphopeptides were identified from single 2-h RPLC-MS/MS analysis (~88% specificity). An additional advantage of this method is the significantly improved reproducibility of the phosphopeptide enrichment results. When four independent phosphopeptide enrichment experiments were carried out, the peak areas of phosphopeptides identified among four enrichment experiments were relatively similar (less than 16.2% relative standard dev.). Because of this increased reproducibility, relative phosphorylation quantification analysis of major phosphoproteins appears to be feasible without the need for stable isotope labeling techniques.  相似文献   

3.
4.
Immobilized metal affinity chromatography (IMAC) is a common strategy used for the enrichment of phosphopeptides from digested protein mixtures. However, this strategy by itself is inefficient when analyzing complex protein mixtures. Here, we assess the effectiveness of using protein-based IMAC as a pre-enrichment step prior to peptide-based IMAC. Ultimately, we couple the two IMAC-based enrichments and MudPIT in a quantitative phosphoproteomic analysis of the epidermal growth factor pathway in mammalian cells identifying 4470 unique phosphopeptides containing 4729 phosphorylation sites.  相似文献   

5.
蛋白质磷酸化是生物体内非常重要的翻译后修饰方式 ,对磷酸化蛋白质的分析及磷酸化位点的确定有助于理解与其相关的生物功能。基质辅助激光解吸 /电离飞行时间质谱和电喷雾 四极杆 飞行时间质谱这两种生物质谱仪在蛋白质鉴定和翻译后修饰分析中发挥着重要作用。固相金属亲和色谱可选择性亲和提取肽混合物中的磷酸肽 ,结合磷酸酶水解实验和基质辅助激光解吸 /电离飞行时间质谱分析可确定肽混合物中的磷酸肽 ,最后用电喷雾 四极杆 飞行时间串联质谱分析磷酸肽的序列 ,结合数据库检索确定磷酸化位点。  相似文献   

6.
Due to the dynamic nature and low stoichiometry of protein phosphorylation, enrichment of phosphorylated peptides from proteolytic mixtures is often necessary prior to their characterization by mass spectrometry. Immobilized metal affinity chromatography (IMAC) is a popular way to enrich phosphopeptides; however, conventional IMAC lacks enough specificity for efficient phosphoproteome analysis. In this study, novel Fe 3O 4@TiO 2 microspheres with well-defined core-shell structure were prepared and developed for highly specific purification of phosphopeptides from complex peptide mixtures. The enrichment conditions were optimized using tryptic digests of beta-casein, and the high specificity of the Fe 3O 4@TiO 2 core-shell microspheres was demonstrated by effectively enriching phosphopeptides from the digest mixture of alpha-casein and beta-casein, as well as a five-protein mixture containing nonphosphoproteins (bovine serum albumin (BSA), myoglobin, cytochrome c) and phosphoproteins (ovalbumin and beta-casein). The Fe 3O 4@TiO 2 core-shell microspheres were further successfully applied for the nano-LC-MS/MS analysis of rat liver phosphoproteome, which resulted in identification of 56 phosphopeptides (65 phosphorylation sites) in mouse liver lysate in a single run, indicating the excellent performance of the Fe 3O 4@TiO 2 core-shell microspheres.  相似文献   

7.
Immobilized metal ion affinity chromatography (IMAC) is a commonly used technique for phosphoprotein analysis due to its specific affinity for phosphopeptides. In this study, Fe3+-immobilized magnetic nanoparticles (Fe3+-IMAN) with an average diameter of 15 nm were synthesized and applied to enrich phosphopeptides. Compared with commercial microscale IMAC beads, Fe3+-IMAN has a larger surface area and better dispersibility in buffer solutions which improved the specific interaction with phosphopeptides. Using tryptic digests of the phosphoprotein alpha-casein as a model sample, the number and signal-to-noise ratios of the phosphopeptides identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) following Fe3+-IMAN enrichment greatly increased relative to results obtained with direct MALDI-TOFMS analysis. The lowest detectable concentration is 5 x 10(-11) M for 100 microL of pure standard phosphopeptide (FLTEpYVATR) following Fe3+-IMAN enrichment. We presented a phosphopeptide enrichment scheme using simple Fe3+-IMAN and also a combined approach of strong cation exchange chromatography and Fe3+-IMAN for phosphoproteome analysis of the plasma membrane of mouse liver. In total, 217 unique phosphorylation sites corresponding to 158 phosphoproteins were identified by nano-LC-MS/MS. This efficient approach will be very useful in large-scale phosphoproteome analysis.  相似文献   

8.
Global analyses of protein phosphorylation require specific enrichment methods because of the typically low abundance of phosphoproteins. To date, immobilized metal ion affinity chromatography (IMAC) for phosphopeptides has shown great promise for large-scale studies, but has a reputation for poor specificity. We investigated the potential of IMAC in combination with capillary liquid chromatography coupled to tandem mass spectrometry for the identification of plasma membrane phosphoproteins of Arabidopsis. Without chemical modification of peptides, over 75% pure phosphopeptides were isolated from plasma membrane digests and detected and sequenced by mass spectrometry. We present a scheme for two-dimensional peptide separation using strong anion exchange chromatography prior to IMAC that both decreases the complexity of IMAC-purified phosphopeptides and yields a far greater coverage of monophosphorylated peptides. Among the identified sequences, six originated from different isoforms of the plasma membrane H(+)-ATPase and defined two previously unknown phosphorylation sites at the regulatory C terminus. The potential for large-scale identification of phosphorylation sites on plasma membrane proteins will have wide-ranging implications for research in signal transduction, cell-cell communication, and membrane transport processes.  相似文献   

9.
In the mammalian central nervous system, the structure known as the postsynaptic density (PSD) is a dense complex of proteins whose function is to detect and respond to neurotransmitter released from presynaptic axon terminals. Regulation of protein phosphorylation in this molecular machinery is critical to the activity of its components, which include neurotransmitter receptors, kinases/phosphatases, scaffolding molecules, and proteins regulating cytoskeletal structure. To characterize the phosphorylation state of proteins in PSD samples, we combined strong cation exchange (SCX) chromatography with IMAC. Initially, tryptic peptides were separated by cation exchange and analyzed by reverse phase chromatography coupled to tandem mass spectrometry, which led to the identification of phosphopeptides in most SCX fractions. Because each of these individual fractions was too complex to characterize completely in single LC-MS/MS runs, we enriched for phosphopeptides by performing IMAC on each SCX fraction, yielding at least a 3-fold increase in identified phosphopeptides relative to either approach alone (SCX or IMAC). This enabled us to identify at least one site of phosphorylation on 23% (287 of 1,264) of all proteins found to be present in the postsynaptic density preparation. In total, we identified 998 unique phosphorylated peptides, mapping to 723 unique sites of phosphorylation. At least one exact site of phosphorylation was determined on 62% (621 of 998) of all phosphopeptides, and approximately 80% of identified phosphorylation sites are novel.  相似文献   

10.
Accurate determination of protein phosphorylation is challenging, particularly for researchers who lack access to a high-accuracy mass spectrometer. In this study, multiple protocols were used to enrich phosphopeptides, and a rigorous filtering workflow was used to analyze the resulting samples. Phosphopeptides were enriched from cultured rat renal proximal tubule cells using three commonly used protocols and a dual method that combines separate immobilized metal affinity chromatography (IMAC) and titanium dioxide (TiO2) chromatography, termed dual IMAC (DIMAC). Phosphopeptides from all four enrichment strategies were analyzed by liquid chromatography-multiple levels of mass spectrometry (LC-MSn) neutral-loss scanning using a linear ion trap mass spectrometer. Initially, the resulting MS2 and MS3 spectra were analyzed using PeptideProphet and database search engine thresholds that produced a false discovery rate (FDR) of <1.5% when searched against a reverse database. However, only 40% of the potential phosphopeptides were confirmed by manual validation. The combined analyses yielded 110 confidently identified phosphopeptides. Using less-stringent initial filtering thresholds (FDR of 7–9%), followed by rigorous manual validation, 262 unique phosphopeptides, including 111 novel phosphorylation sites, were identified confidently. Thus, traditional methods of data filtering within widely accepted FDRs were inadequate for the analysis of low-resolution phosphopeptide spectra. However, the combination of a streamlined front-end enrichment strategy and rigorous manual spectral validation allowed for confident phosphopeptide identifications from a complex sample using a low-resolution ion trap mass spectrometer.  相似文献   

11.
Despite recent advances in instrumentation and analytical strategies for identification and quantitation of protein phosphorylation, a highly specific enrichment protocol is still a challenge in large-scale studies. Here, we report a simple pH/acid control method that addresses the poor specificity seriously criticized in IMAC. Detailed evaluation of the capture and release mechanism in IMAC revealed that pH, buffer and salt yield a complex interplay in enrichment of phosphopeptides, yet they play individual roles in recovery and specificity. A revised one-step IMAC method with low sample loss and high specificity can be rationally designed by controlling salt, pH and the structure and concentration of organic acid. Without methyl esterification, the one-step IMAC enrichment with single LC-MS/MS identified 386 phosphoproteins in 550 mug of non-small-cell lung cancer cell lysate with 96% specificity. Additional fractionation by SDS-PAGE from 4 mg of cell lysate revealed the comprehensive proteome map, identifying 2747 phosphorylation sites from 2360 nondegenerate phosphopeptides and 1219 phosphoproteins with a false discovery rate of 0.63%. To our knowledge, this pH/acid-controlled IMAC procedure provides higher specificity than any other one-step IMAC purification procedure. Furthermore, the simple and reproducible IMAC protocol can be adapted to other solid supports, fully automated or manual, for large-scale identification of the vastly under-explored phosphoproteome.  相似文献   

12.
We evaluated a sequential elution protocol from immobilized metal affinity chromatography (SIMAC) employing gallium-based immobilized metal affinity chromatography (IMAC) in conjunction with titanium dioxide-based metal oxide affinity chromatography (MOAC). The quantitative performance of this SIMAC enrichment approach, assessed in terms of repeatability, dynamic range, and linearity, was evaluated using a mixture composed of tryptic peptides from caseins, bovine serum albumin, and phosphopeptide standards. Although our data demonstrate the overall consistent performance of the SIMAC approach under various loading conditions, the results also revealed that the method had limited repeatability and linearity for most phosphopeptides tested, and different phosphopeptides were found to have different linear ranges. These data suggest that, unless additional strategies are used, SIMAC should be regarded as a semiquantitative method when used in large-scale phosphoproteomics studies in complex backgrounds.  相似文献   

13.
Worthington J  Cutillas PR  Timms JF 《Proteomics》2011,11(23):4583-4587
Protein regulation by reversible phosphorylation is fundamental in nature, and large-scale phosphoproteomic analyses are becoming routine in proteomics laboratories. These analyses utilise phosphopeptide separation and enrichment techniques linked to LC-MS/MS. Herein, we report that IMAC and TiO(2) also enrich for non-phosphorylated modified peptides such as acetylated, deamidated and carbamylated peptides. Urea and digestion conditions commonly used in phosphoproteomic workflows are the likely sources of the induced modifications (deamidation and carbamylation) and can easily modify phosphopeptides. Including these variable modifications in database searches increased the total number of identified phosphopeptides by 15%. We also show that strong cation exchange fractionation provides poor resolution of phosphopeptides and actually enriches these alternatively modified peptides. By switching to reverse-phase chromatography, we show a significant improvement in the number of identified phosphopeptides. We recommend that the users of phosphopeptide enrichment strategies avoid using urea as a denaturant and that careful consideration is given to chromatographic conditions and the types of variable modifications used in database searches. Thus, the capacity of IMAC and TiO(2) to enrich phosphopeptides bearing modifications other than phosphorylation is a previously unappreciated property of these chromatographies with practical implications for the field of phosphoproteomics.  相似文献   

14.
We have developed a method to isolate and enhance the detection of phosphopeptides using liquid chromatography (LC)/mass spectrometry on a tryptic-digested protein sample. The method uses an on-line two-dimensional chromatography approach that consists of strong cation exchange (SCX) followed by reversed-phase (RP) chromatography with mass spectrometric detection. At pH 2.6 or lower, tryptic phosphopeptides are not retained during the first-dimension SCX chromatography step. Thus the capture of these peptides in the flow-through by the second-dimension RP trap can dramatically reduce the complexity of the phosphopeptide chromatography, resulting in little or no suppression of the signal often caused by the coeluting nonphosphorylated peptides. The method provides higher phosphopeptide recovery and less nonspecific biding of acidic peptides than the commonly used enrichment methods, such as immobilized metal affinity chromatography. Since the widely adopted multidimensional LC strategy in shotgun proteomics uses a similar SCX-RP approach, the method can be adapted to detect and characterize phosphopeptides from a complex mixture in a single experiment. Limitations of the method are also discussed.  相似文献   

15.
The study of protein phosphorylation has grown exponentially in recent years, as it became evident that important cellular functions are regulated by phosphorylation and dephosphorylation of proteins on serine, threonine and tyrosine residues. The use of immobilized metal affinity chromatography (IMAC) to enrich phosphopeptides from peptide mixtures has been shown to be useful especially prior to mass spectrometric analysis. For the selective enrichment applying solid-phase extraction (SPE) of phosphorylated peptides, we introduce poly(glycidyl methacrylate/divinylbenzene) (GMD) derivatized with imino-diacetic acid (IDA) and bound Fe(III) as a material. GMD is rapidly synthesized and the resulting free epoxy groups enable an easy access to further derivatization with, e.g., IDA. Electron microscopy showed that the synthesized GMD-IDA-Fe(III) for SPE has irregular agglomerates of spherical particles. Inductively coupled plasma (ICP) analysis resulted in a metal capacity of Fe(III) being 25.4 micromol/mL. To enable on-line preconcentration and desalting in one single step, GMD-IDA-Fe(III) and Silica C18 were united in one cartridge. Methyl esterification (ME) of free carboxyl groups was carried out to prevent binding of nonphosphorylated peptides to the IMAC function. The recovery for a standard phosphopeptide using this SPE method was determined to be 92%. The suitability of the established system for the selective enrichment and analysis of model proteins phosphorylated at different amino acid residues was evaluated stepwise. After successful enrichment of beta-casein deriving phosphopeptides, the established system was extended to the analysis of in vitro phosphorylated proteins, e.g. deriving from glutathione-S-transferase tagged extracellular signal regulated kinase 2 (GST-ERK2).  相似文献   

16.
Han G  Ye M  Zhou H  Jiang X  Feng S  Jiang X  Tian R  Wan D  Zou H  Gu J 《Proteomics》2008,8(7):1346-1361
The mixture of phosphopeptides enriched from proteome samples are very complex. To reduce the complexity it is necessary to fractionate the phosphopeptides. However, conventional enrichment methods typically only enrich phosphopeptides but not fractionate phosphopeptides. In this study, the application of strong anion exchange (SAX) chromatography for enrichment and fractionation of phosphopeptides was presented. It was found that phosphopeptides were highly enriched by SAX and majority of unmodified peptides did not bind onto SAX. Compared with Fe(3+) immobilized metal affinity chromatography (Fe(3+)-IMAC), almost double phosphopeptides were identified from the same sample when only one fraction was generated by SAX. SAX and Fe(3+)-IMAC showed the complementarity in enrichment and identification of phosphopeptides. It was also demonstrated that SAX have the ability to fractionate phosphopeptides under gradient elution based on their different interaction with SAX adsorbent. SAX was further applied to enrich and fractionate phosphopeptides in tryptic digest of proteins extracted from human liver tissue adjacent to tumorous region for phosphoproteome profiling. This resulted in the highly confident identification of 274 phosphorylation sites from 305 unique phosphopeptides corresponding to 168 proteins at false discovery rate (FDR) of 0.96%.  相似文献   

17.
Four commercially available immobilized metal ion affinity chromatography (IMAC) methods for phosphopeptide enrichment were compared using small volumes and concentrations of phosphopeptide mixtures with or without extra-added bovine serum albumin (BSA) nonphosphorylated peptides. Addition of abundant tryptic BSA peptides to the phosphopeptide mixture increases the demand for selective IMAC capture. While SwellGel gallium Discs, IPAC Metal Chelating Resin, and ZipTipMC Pipette Tips allow for the possibility of enriching phosphopeptides, the Gyrolab MALDI IMAC1 also presents the possibility of verifying existing phosphopeptides after a dephosphorylation step. Phosphate-containing peptides are identified through a mass shift between phosphorylated and dephosphorylated spectra of 80 Da (or multiples of 80 Da). This verification is useful if the degree of phosphorylation is low in the sample or if the ionization is unfavorable, which often is the case for phosphopeptides. A peptide mixture in which phosphorylated serine, threonine, and tyrosine were represented was diluted in steps and thereafter enriched using the four different IMAC methods prior to analyses with matrix assisted laser desorption/ionization mass spectrometry. The enrichment of phosphopeptides using SwellGel Gallium Discs or Gyrolab MALDI IMAC1 was not significantly affected by the addition of abundant BSA peptides added to the sample mixture, and the achieved detection limits using these techniques were also the lowest. All four of the included phosphopeptides were detected by MALDI-MS only after enrichment using the Gyrolab MALDI IMAC1 compact disc (CD) and detection down to low femtomole levels was possible. Furthermore, selectivity, reproducibility, and detection for a number of other phosphopeptides using the IMAC CD are reported herein. For example, two phosphopeptides sent out in a worldwide survey performed by the Proteomics Research Group (PRG03) of the Association of Biomolecular Resource Facilities (ABRF) were detected and verified by means of the 80 Da mass shift achieved by on-column dephosphorylation.  相似文献   

18.
Immobilized metal affinity chromatography (IMAC) and titanium oxide (TiO2) chromatography are simple, widely used, and cost-effective methods to enrich phosphopeptides, but the sample loading buffer composition, desalting procedure, and control of loading amount are critical to avoid nonspecific interactions and to achieve efficient phosphopeptide enrichment. Although the combination of MS3 analysis and high-resolution mass spectrometry (MS) is helpful to identify phosphopeptides, the quality of many MS/MS spectra having a neutral loss peak of phosphate is still too poor to allow sequence identification, and this results in many false-negative as well as false-positive identifications. Here, we present a novel strategy, which is based on the use of alkaline phosphatase to remove phosphates and analysis of phospho/dephosphopeptide retention times to increase the reliability of identification. The use of phospho/dephosphopeptide retention time ratios allows the identification of phosphopeptides with high confidence with the aid of a focused database of dephosphopeptides. This approach was very effective to identify multiple phophorylations in tryptic peptides. A 'true' phosphorylation data set should contain about 90% phospho-Ser and a few percent phospho-Tyr, and this ratio can be used as a quality criterion for evaluation of data sets. By applying this efficient approach, we were able to identify more than one thousand phosphopeptides.  相似文献   

19.
Improvements to phosphopeptide enrichment protocols employing titanium dioxide (TiO2) are described and applied to identification of phosphorylation sites on recombinant human cyclin-dependent kinase 2 (CDK2). Titanium dioxide binds phosphopeptides under acidic conditions, and they can be eluted under basic conditions. However, some nonphosphorylated peptides, particularly acidic peptides, bind and elute under these conditions as well. These nonphosphorylated peptides contribute significantly to ion suppression of phosphopeptides and also increase sample complexity. We show here that the conversion of peptide carboxylates to their corresponding methyl esters sharply reduces nonspecific binding, improving the selectivity for phosphopeptides, just as has been reported for immobilized metal affinity chromatography (IMAC) columns. We also present evidence that monophosphorylated peptides can be effectively fractionated from multiply phosphorylated peptides, as well as acidic peptides, via stepwise elution from TiO2 using pH step gradients from pH 8.5 to pH 11.5. These approaches were applied to human CDK2 phosphorylated in vitro by yeast CAK1p in the absence of cyclin. We confirmed phosphorylation at T160, a site previously documented and shown to be necessary for CDK2 activity. However, we also discovered several novel sites of partial phosphorylation at S46, T47, T165, and Y168 when ion-suppressing nonphosphorylated peptides were eliminated using the new protocols.  相似文献   

20.
A hallmark of the response to high-dose radiation is the up-regulation and phosphorylation of proteins involved in cell cycle checkpoint control, DNA damage signaling, DNA repair, and apoptosis. Exposure of cells to low doses of radiation has well documented biological effects, but the underlying regulatory mechanisms are still poorly understood. The objective of this study is to provide an initial profile of the normal human skin fibroblast (HSF) phosphoproteome and explore potential differences between low- and high-dose irradiation responses at the protein phosphorylation level. Several techniques including Trizol extraction of proteins, methylation of tryptic peptides, enrichment of phosphopeptides with immobilized metal affinity chromatography (IMAC), nanoflow reversed-phase HPLC (nano-LC)/electrospray ionization, and tandem mass spectrometry were combined for analysis of the HSF cell phosphoproteome. Among 494 unique phosphopeptides, 232 were singly phosphorylated, while 262 peptides had multiple phosphorylation sites indicating the overall effectiveness of the IMAC technique to enrich both singly and multiply phosphorylated peptides. We observed approximately 1.9-fold and approximately 3.6-fold increases in the number of identified phosphopeptides in low-dose and high-dose samples respectively, suggesting both radiation levels stimulate cell signaling pathways. A 6-fold increase in the phosphorylation of cyclin dependent kinase (cdk) motifs was observed after low- dose irradiation, while high-dose irradiation stimulated phosphorylation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) and AKT/RSK motifs 8.5- and 5.5-fold, respectively. High- dose radiation resulted in the increased phosphorylation of proteins involved in cell signaling pathways as well as apoptosis while low-dose and control phosphoproteins were broadly distributed among biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号