首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The impact of legacy nuclear waste on the compositional diversity and distribution of sulfate-reducing bacteria in a heavily contaminated subsurface aquifer was examined. dsrAB clone libraries were constructed and restriction fragment length polymorphism (RFLP) analysis used to evaluate genetic variation between sampling wells. Principal component analysis identified nickel, nitrate, technetium, and organic carbon as the primary variables contributing to well-to-well geochemical variability, although comparative sequence analysis showed the sulfate-reducing bacteria community structure to be consistent throughout contaminated and uncontaminated regions of the aquifer. Only 3% of recovered dsrAB gene sequences showed apparent membership to the Deltaproteobacteria. The remainder of recovered sequences may represent novel, deep-branching lineages that, to our knowledge, do not presently contain any cultivated members; although corresponding phylotypes have recently been reported from several different marine ecosystems. These findings imply resiliency and adaptability of sulfate-reducing bacteria to extremes in environmental conditions, although the possibility for horizontal transfer of dsrAB is also discussed.  相似文献   

2.
The metal resistance of 350 subsurface bacterial strains from two U.S. Department of Energy facilities, the Savannah River Site (SRS), South Carolina, and the Hanford site, Washington, was determined to assess the effect of metal toxicity on microorganisms in the deep terrestrial subsurface. Resistance was measured by growth inhibition around discs containing optimized amounts of Hg(II), Pb(II), and Cr(VI). A broad range of resistance levels was observed, with some strains of Arthrobacter spp. demonstrating exceptional tolerance. A higher level of resistance to Hg(II) and Pb(II) (P < 0.05) and a higher occurrence of multiple resistances suggested that metals more effectively influenced microbial evolution in subsurface sediments of the SRS than in those of the Hanford site. Common resistance to heavy metals suggests that toxic metals are unlikely to inhibit bioremediation in deep subsurface environments that are contaminated with mixed wastes.  相似文献   

3.
The Waste Isolation Pilot Plant (WIPP) is a salt mine constructed 650 meters below the ground surface by the United States Department of Energy. The facility will be used for permanent disposal of transuranic wastes. This underground repository has been constructed in the geologically stable Permian age Salado salt formation. Of the wastes to be placed into the facility, 85% will be biodegradable cellulose. A 3-year survey of the bacterial populations existing within the facility was conducted. Bacterial populations were found to be heterogeneously distributed throughout the mine. Populations in some mine areas reached as high as 1.0 × 104 colony-forming units per gram of NaCl. The heterogeneous distribution of bacteria within the mine did not follow any recognizable pattern related to either age of the workings or to human activity. A biochemical comparison between ten known species of halophilic bacteria, and strains isolated from both the mine and nearby surface hypersaline lakes, showed the presence of extreme halophiles with wide biochemical diversity, some of which could prove to represent previously undescribed groups. The halophilic bacteria isolated from the mine were found to degrade cellulose and a wide variety of other carbon compounds. When exposed to two types of common laboratory paper, the cellulose-degrading halophiles attached to the substrate within 30 minutes of inoculation. Cultures enriched directly from a brine seep in the mine easily destroyed both papers and produced detectable amounts of oxalacetic and pyruvic acids. The combination of heterogeneity in the distribution of organisms, the presence of a physiologically diverse community, and the relatively slow metabolism of cellulose may explain several long-standing debates about the existence of microorganisms in ancient underground salt formations. Received: September 29, 1997 / Accepted: January 29, 1998  相似文献   

4.
High diversity in DNA of soil bacteria   总被引:65,自引:0,他引:65  
Soil bacterium DNA was isolated by minor modifications of previously described methods. After purification on hydroxyapatite and precipitation with cetylpyridinium bromide, the DNA was sheared in a French press to give fragments with an average molecular mass of 420,000 daltons. After repeated hydroxyapatite purification and precipitation with cetylpyridinium bromide, high-pressure liquid chromatography analysis showed the presence of 2.1% RNA or less, whereas 5-methylcytosine made up 2.9% of the total deoxycytidine content. No other unusual bases could be detected. The hyperchromicity was 31 to 36%, and the melting curve in 1 X SSC (0.15 M NaCl plus 0.015 M sodium citrate) corresponded to 58.3 mol% G+C. High-pressure liquid chromatography analysis of two DNA samples gave 58.6 and 60.8 mol% G+C. The heterogeneity of the DNA was determined by reassociation of single-stranded DNA, measured spectrophotometrically. Owing to the high complexity of the DNA, the reassociation had to be carried out in 6 X SSC with 30% dimethyl sulfoxide added. Cuvettes with a 1-mm light path were used, and the A275 was read. DNA concentrations as high as 950 micrograms ml-1 could be used, and the reassociation rate of Escherichia coli DNA was increased about 4.3-fold compared with standard conditions. C0t1/2 values were determined relative to that for E. coli DNA, whereas calf thymus DNA was reassociated for comparison. Our results show that the major part of DNA isolated from the bacterial fraction of soil is very heterogeneous, with a C0t1/2 about 4,600, corresponding to about 4,000 completely different genomes of standard soil bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Anaerobic microorganisms were enumerated and metabolic activities measured in deep Coastal Plain sediments sampled from three water‐bearing formations at depths down to 300 m. Aseptically obtained sediment cores harbored the potential for anaerobic biodegradation of various substrates in almost all samples. Although the sediments were not predominantly anaerobic, viable methanogens and sulfate‐reducing bacteria (SRB) were present almost throughout the depth profile. Coliform organisms were also found at various locations, but were not recoverable from drilling muds or water used to slurry the muds. The anaerobic metabolism of lactate and formate was easily detected in most samples. However, acetate and benzoate were degraded only in portions of the subsurface that harbored methanogens. The water‐saturated transmissive zones harbored the highest numbers of SRB and the potential for the widest variety of anaerobic metabolic activities. Small or negligible anaerobic microbial activity was associated with thick clay layers. The accumulation of acetate and the production of methane in samples not amended with exogenous organic matter demonstrated that some strata contained reserves of fermentable carbon and suggested that environmental factors or nutrients other than carbon were potentially limiting in situ microbial activity.  相似文献   

6.
High diversity in DNA of soil bacteria.   总被引:16,自引:7,他引:16       下载免费PDF全文
Soil bacterium DNA was isolated by minor modifications of previously described methods. After purification on hydroxyapatite and precipitation with cetylpyridinium bromide, the DNA was sheared in a French press to give fragments with an average molecular mass of 420,000 daltons. After repeated hydroxyapatite purification and precipitation with cetylpyridinium bromide, high-pressure liquid chromatography analysis showed the presence of 2.1% RNA or less, whereas 5-methylcytosine made up 2.9% of the total deoxycytidine content. No other unusual bases could be detected. The hyperchromicity was 31 to 36%, and the melting curve in 1 X SSC (0.15 M NaCl plus 0.015 M sodium citrate) corresponded to 58.3 mol% G+C. High-pressure liquid chromatography analysis of two DNA samples gave 58.6 and 60.8 mol% G+C. The heterogeneity of the DNA was determined by reassociation of single-stranded DNA, measured spectrophotometrically. Owing to the high complexity of the DNA, the reassociation had to be carried out in 6 X SSC with 30% dimethyl sulfoxide added. Cuvettes with a 1-mm light path were used, and the A275 was read. DNA concentrations as high as 950 micrograms ml-1 could be used, and the reassociation rate of Escherichia coli DNA was increased about 4.3-fold compared with standard conditions. C0t1/2 values were determined relative to that for E. coli DNA, whereas calf thymus DNA was reassociated for comparison. Our results show that the major part of DNA isolated from the bacterial fraction of soil is very heterogeneous, with a C0t1/2 about 4,600, corresponding to about 4,000 completely different genomes of standard soil bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Deep subsurface sandstones in the area of Berlin (Germany) located 600 to 1060 m below the surface were examined for the presence of viable microorganisms. The in situ temperatures at the sampling sites ranged from 37 to 45 degrees C. Investigations focussed on sulfate-reducing bacteria able to grow on methanol and triethylene glycol, which are added as chemicals to facilitate the long-term underground storage of natural gas. Seven strains were isolated from porewater brines in the porous sandstone. Three of them were obtained with methanol (strains H1M, H3M, and B1M), three strains with triethylene glycol (strains H1T, B1T, and B2T) and one strain with a mixture of lactate, acetate and butyrate (strain H1-13). Due to phenotypic properties six isolates could be identified as members of the genus Desulfovibrio, and strain B2T as a Desulfotomaculum. The salt tolerance and temperature range for growth indicated that the isolates originated from the indigenous deep subsurface sandstones. They grew in mineral media reflecting the in situ ionic composition of the different brines, which contained 1.5 to 190 g NaCl x l(-1) and high calcium and magnesium concentrations. The Desulfovibrio strains grew at temperatures between 20 and 50 degrees C, while the Desulfotomaculum strain was thermophilic and grew between 30 and 65 degrees C. The strains utilized a broad spectrum of electron donors and acceptors. They grew with carbon compounds like lactate, pyruvate, formate, n-alcohols (C1-C5), glycerol, ethylene glycol, malate, succinate, and fumarate. Some strains even utilized glucose as electron donor and carbon source. All strains were able to use sulfate, sulfite and nitrate as electron acceptors. Additionally, three Desulfovibrio strains reduced manganese oxide, the Desulfotomaculum strain reduced manganese oxide, iron oxide, and elemental sulfur. The 16S rRNA analysis revealed that the isolates belong to three different species. The strains H1T, H3M and B1M could be identified as Desulfovibrio indonesiensis, and strain B2T as Desulfotomaculum geothermicum. The other Desulfovibrio strains (H1M, H1-13, and B1T) showed identical 16S rDNA sequences and similarities as low as 93% to their closest relative, Desulfovibrio aminophilusT. Therefore, these isolates were assigned to a new species, Desulfovibrio cavernae sp. nov., with strain H1M as the type strain.  相似文献   

8.
9.
Lateral gene transfer (LGT) plays a vital role in increasing the genetic diversity of microorganisms and promoting the spread of fitness-enhancing phenotypes throughout microbial communities. To date, LGT has been investigated in surface soils, natural waters, and biofilm communities but not in the deep terrestrial subsurface. Here we used a combination of molecular analyses to investigate the role of LGT in the evolution of metal homeostasis in lead-resistant subsurface bacteria. A nested PCR approach was employed to obtain DNA sequences encoding P(IB)-type ATPases, which are proteins that transport toxic or essential soft metals such as Zn(II), Cd(II), and Pb(II) through the cell wall. Phylogenetic incongruencies between a 16S rRNA gene tree and a tree based on 48 P(IB)-type ATPase amplicons and sequences available for complete bacterial genomes revealed an ancient transfer from a member of the beta subclass of the Proteobacteria (beta-proteobacterium) that may have predated the diversification of the genus PSEUDOMONAS: Four additional phylogenetic incongruencies indicate that LGT has occurred among groups of beta- and gamma-proteobacteria. Two of these transfers appeared to be recent, as indicated by an unusual G+C content of the P(IB)-type ATPase amplicons. This finding provides evidence that LGT plays a distinct role in the evolution of metal homeostasis in deep subsurface bacteria, and it shows that molecular evolutionary approaches may be used for investigation of this process in microbial communities in specific environments.  相似文献   

10.
Bacterial community composition among individual, experimentally generated ‘lake snow’ particles may be highly variable. Since such aggregates are seasonally abundant in the mixed upper layer of lakes, we hypothesized that particle-attached (PA) bacteria disproportionally contribute to the small-scale spatial beta diversity of pelagic communities. Community composition was analysed in sets of small (10 mL) samples collected from a pre-alpine lake in May, July and October 2018. Bacteria were classified as free-living (FL) or PA depending on their presence in large, 5-μm pre-filtered reference samples. FL exhibited clear seasonal differences in community composition and assembly. They were spatially uniform in May and July, and only a few FL taxa exhibited significant spatial variability. Spatial heterogeneity of FL in October was caused by high alpha and beta diversity of rare taxa, many with a presumably ‘tychoplanktic’ (alternating attached and free-living) lifestyle. The spatial beta diversity of PA was always high, and only about 10% of their seasonal richness was present in any single sample. Thus, most compositional variability of pelagic bacteria at spatial scales of cm to m either directly or indirectly originated from PA. On a functional level, this genotypic heterogeneity might affect the spatial distribution of rare metabolic traits.  相似文献   

11.
Mycorrhizal diversity in photosynthetic terrestrial orchids   总被引:12,自引:2,他引:12  
  相似文献   

12.
Osedax worms are whale-fall specialists that infiltrate whale bones with their root tissues. These are filled with endosymbiotic bacteria hypothesized to provide their hosts with nutrition by extracting organic compounds from the whale bones. We investigated the diversity and distribution of symbiotic bacteria in Osedax mucofloris from shallow-water whale-falls in the North Atlantic using comparative 16S rRNA sequence analysis and fluorescence in situ hybridization (FISH). We observed a higher diversity of endosymbionts than previously described from other Osedax species. Endosymbiont sequences fell into eight phylogenetically distinct clusters (with 91.4-98.9% similarity between clusters), and considerable microdiversity within clusters (99.5-99.7% similarity) was observed. Statistical tests revealed a highly significant effect of the host individual on endosymbiont diversity and distribution, with 68% of the variability between clusters and 40% of the variability within clusters explained by this effect. FISH analyses showed that most host individuals were dominated by endosymbionts from a single cluster, with endosymbionts from less abundant clusters generally confined to peripheral root tissues. The observed diversity and distribution patterns indicate that the endosymbionts are transmitted horizontally from the environment with repeated infection events occurring as the host root tissues grow into the whale bones.  相似文献   

13.
The recently discovered comammox process encompasses both nitrification steps, the aerobic oxidation of ammonia and nitrite, in a single organism. All known comammox bacteria are affiliated with Nitrospira sublineage II and can be grouped into two distinct clades, referred to as A and B, based on ammonia monooxygenase phylogeny. In this study, we report high-quality draft genomes of two novel comammox Nitrospira from the terrestrial subsurface, representing one clade A and one clade B comammox organism. The two metagenome-assembled genomes were compared with other representatives of Nitrospira sublineage II, including both canonical and comammox Nitrospira. Phylogenomic analyses confirmed the affiliation of the two novel Nitrospira with comammox clades A and B respectively. Based on phylogenetic distance and pairwise average nucleotide identity values, both comammox Nitrospira were classified as novel species. Genomic comparison revealed high conservation of key metabolic features in sublineage II Nitrospira, including respiratory complexes I–V and the machineries for nitrite oxidation and carbon fixation via the reductive tricarboxylic acid cycle. In addition, the presence of the enzymatic repertoire for formate and hydrogen oxidation in the Rifle clades A and B comammox genomes, respectively, suggest a broader distribution of these metabolic features than previously anticipated.  相似文献   

14.
Emulsification of hydrocarbons by subsurface bacteria   总被引:2,自引:0,他引:2  
Summary Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions indicating the high probability of biosurfactant production.  相似文献   

15.
16.
Culturable bacteria from the deep subsurface (179 m) at Cerro Negro, New Mexico were isolated and characterized. The average number of viable aerobic bacteria was estimated to be 5×105g–1 of sediment, but only about 0.1% of these could be recovered on agar medium when incubated under aerobic conditions. Of 158 strains isolated from this depth, 92 were characterized by cellular fatty acid profiles (FAME), 36 by analysis of partial 16S rDNA sequences, and 44 by rep-PCR genome fingerprint analysis using three different sets of oligonucleotide primers (REP, BOX, or ERIC). These analyses showed the majority of isolates (67%) were Gram-positive bacteria and primarily members of genera with a high %G+C DNA. The remaining isolates were -subdivisionProteobacteria (19%) and members of the flavobacteria group (14%). The diversity indices based on these different methods of characterization were very high suggesting this subsurface habitat harbors a highly diverse microbial community.  相似文献   

17.
Drying disturbances are the primary determinant of aquatic community biodiversity in dynamic river ecosystems. Research exploring how communities respond to disturbance has focused on benthic invertebrates in surface sediments, inadequately representing a connected community that extends into the subsurface. We compared subsurface and benthic invertebrate responses to drying, to identify common and context‐dependent spatial patterns. We characterized community composition, alpha diversity and beta diversity across a gradient of drying duration. Subsurface communities responded to drying, but these responses were typically less pronounced than those of benthic communities. Despite compositional changes and in contrast to reductions in benthic alpha diversity, the alpha diversity of subsurface communities remained stable except at long drying durations. Some primarily benthic taxa were among those whose subsurface frequency and abundance responded positively to drying. Collectively, changing composition, stable richness and taxon‐specific increases in occurrence provide evidence that subsurface sediments can support persistence of invertebrate communities during drying disturbances. Beta‐diversity patterns varied and no consistent patterns distinguished the total diversity, turnover or nestedness of subsurface compared to benthic communities. In response to increasing drying duration, beta diversity increased or remained stable for benthic communities, but remained stable or decreased for subsurface communities, likely reflecting contrasts in the influence of mass effects, priority effects and environmental filtering. Dissimilarity between subsurface and benthic communities remained stable or increased with drying duration, suggesting that subsurface communities maintain distinct biodiversity value while also supporting temporary influxes of benthic taxa during drying events. As temporary rivers increase in extent due to global change, we highlight that recognizing the connected communities that extend into the subsurface sediments can enable holistic understanding of ecological responses to drying, the key determinant of biodiversity in these dynamic ecosystems.  相似文献   

18.
陆地植物群落物种多样性研究进展   总被引:14,自引:2,他引:14  
王永健  陶建平  彭月   《广西植物》2006,26(4):406-411
生物多样性是当前生态学研究的热点之一,物种多样性层次是最直接、最易观察和最适合研究生物多样性的层次。总结了与群落动态、生境因子、取样尺度及生态系统相关的陆地植物物种多样性研究。同时,根据目前的趋势提出了多样性动态研究的发展动向。  相似文献   

19.
Microbial diversity and heterogeneity in sandy subsurface soils   总被引:5,自引:0,他引:5  
Microbial community diversity and heterogeneity in saturated and unsaturated subsurface soils from Abbott's Pit in Virginia (1.57, 3.25, and 4.05 m below surface) and Dover Air Force Base in Delaware (6.00 and 7.50 m below surface) were analyzed using a culture-independent small-subunit (SSU) rRNA gene (rDNA)-based cloning approach. Four to six dominant operational taxonomic units (OTUs) were identified in 33 to 100 unique SSU rDNA clones (constituting about 40 to 50% of the total number of SSU rDNA clones in the clone library) from the saturated subsurface samples, whereas no dominant OTUs were observed in the unsaturated subsurface sample. Less than 10% of the clones among samples from different depths at the same location were identical, and the proportion of overlapping OTUs was lower for the samples that were vertically far apart than for adjacent samples. In addition, no OTUs were shared between the Abbott's Pit and Dover samples. The majority of the clones (80%) had sequences that were less than 5% different from those in the current databases. Phylogenetic analysis indicated that most of the bacterial clones were affiliated with members of the Proteobacteria family (90%), gram-positive bacteria (3%), and members of the Acidobacteria family (3%). Principal component analysis revealed that samples from different geographic locations were well separated and that samples from the same location were closely grouped together. In addition, the nonsaturated subsurface samples from Abbott's Pit clustered together and were well separated from the saturated subsurface soil sample. Finally, the overall diversity of the subsurface samples was much lower than that of the corresponding surface soil samples.  相似文献   

20.
Anaerobic bacteria from Porcellio scaber hindgut were identified and, subsequently, isolated using molecular approach. Phylogenetic affiliation of bacteria associated with the hindgut wall was determined by analysis of bacterial 16S rRNA gene sequences which were retrieved directly from washed hindguts of P. scaber. Sequences from bacteria related to obligate anaerobic bacteria from genera Bacteroides and Enterococcus were retrieved, as well as sequences from 'A1 subcluster' of the wall-less mollicutes. Bacteria from the genus Desulfotomaculum were isolated from gut wall and cultivated under anaerobic conditions. In contrast to previous reports which suggested the absence of anaerobic bacteria in the isopod digestive system due to short retention time of the food in the tube-like hindgut, frequent renewal of the gut cuticle during the moulting process, and unsuccessful attempts to isolate anaerobic bacteria from this environment our results indicate the presence of resident anaerobic bacteria in the gut of P. scaber, in spite of apparently unsuitable, i.e. predominantly oxic, conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号