首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular networks that control endoplasmic reticulum (ER) redox conditions in mammalian cells are incompletely understood. Here, we show that after reductive challenge the ER steady‐state disulphide content is restored on a time scale of seconds. Both the oxidase Ero1α and the oxidoreductase protein disulphide isomerase (PDI) strongly contribute to the rapid recovery kinetics, but experiments in ERO1‐deficient cells indicate the existence of parallel pathways for disulphide generation. We find PDI to be the main substrate of Ero1α, and mixed‐disulphide complexes of Ero1 primarily form with PDI, to a lesser extent with the PDI‐family members ERp57 and ERp72, but are not detectable with another homologue TMX3. We also show for the first time that the oxidation level of PDIs and glutathione is precisely regulated. Apparently, this is achieved neither through ER import of thiols nor by transport of disulphides to the Golgi apparatus. Instead, our data suggest that a dynamic equilibrium between Ero1‐ and glutathione disulphide‐mediated oxidation of PDIs constitutes an important element of ER redox homeostasis.  相似文献   

2.
In the endoplasmic reticulum (ER) of eukaryotic cells, Ero1 flavoenzymes promote oxidative protein folding through protein disulphide isomerase (PDI), generating reactive oxygen species (hydrogen peroxide) as byproducts. Therefore, Ero1 activity must be strictly regulated to avoid futile oxidation cycles in the ER. Although regulatory mechanisms restraining Ero1α activity ensure that not all PDIs are oxidized, its specificity towards PDI could allow other resident oxidoreductases to remain reduced and competent to carry out isomerization and reduction of protein substrates. In this study, crystal structures of human Ero1α were solved in its hyperactive and inactive forms. Our findings reveal that human Ero1α modulates its oxidative activity by properly positioning regulatory cysteines within an intrinsically flexible loop, and by fine‐tuning the electron shuttle ability of the loop through disulphide rearrangements. Specific PDI targeting is guaranteed by electrostatic and hydrophobic interactions of Ero1α with the PDI b′‐domain through its substrate‐binding pocket. These results reveal the molecular basis of the regulation and specificity of protein disulphide formation in human cells.  相似文献   

3.
The toxic effect of cholera toxin (CT) on target cells is caused by its A1 chain. This polypeptide is released from the holotoxin and unfolded in the lumen of the ER by the action of protein disulfide isomerase (PDI), before being retrotranslocated into the cytosol. The polypeptide is initially unfolded by binding to the reduced form of PDI. We show that upon oxidation of the COOH-terminal disulfide bond in PDI by the enzyme Ero1, the A1 chain is released. Both yeast Ero1 and the mammalian Ero1alpha isoform are active in this reaction. Ero1 has a preference for the PDI-toxin complex. We further show that the complex is transferred to a protein at the lumenal side of the ER membrane, where the unfolded toxin is released from PDI by the action of Ero1. Taken together, our results identify Ero1 as the enzyme mediating the release of unfolded CT from PDI and characterize an additional step in retrotranslocation of the toxin.  相似文献   

4.
Human Ero1alpha is an endoplasmic reticulum (ER)-resident protein responsible for protein disulfide isomerase (PDI) oxidation. To clarify the molecular mechanisms underlying its function, we generated a panel of cysteine replacement mutants and analyzed their capability of: 1) complementing a temperature-sensitive yeast Ero1 mutant, 2) favoring oxidative folding in mammalian cells, 3) forming mixed disulfides with PDI and ERp44, and 4) adopting characteristic redox-dependent conformations. Our results reveal that two essential cysteine triads (Cys85-Cys94-Cys99 and Cys391-Cys394-Cys397) cooperate in electron transfer, with Cys94 likely forming mixed disulfides with PDI. Dominant negative phenotypes arise when critical residues within the triads are mutated (Cys394, Cys397, and to a lesser extent Cys99). Replacing the first cysteine in either triad (Cys85 or Cys391) generates mutants with weaker activity. In addition, mutating either Cys85 or Cys391, but not Cys397, reverts the dominant negative phenotype of the C394A mutant. These findings suggest that interactions between the two triads, dependent on Cys85 and Cys391, are important for Ero1alpha function, possibly stabilizing a platform for efficient PDI oxidation.  相似文献   

5.
Disulphide formation in the endoplasmic reticulum (ER) is catalysed by members of the protein disulphide isomerase (PDI) family. These enzymes can be oxidized by the flavoprotein ER oxidoreductin 1 (Ero1), which couples disulphide formation with reduction of oxygen to form hydrogen peroxide (H(2)O(2)). The H(2)O(2) produced can be metabolized by ER-localized peroxiredoxin IV (PrxIV). Continuous catalytic activity of PrxIV depends on reduction of a disulphide within the active site to form a free thiol, which can then react with H(2)O(2). Here, we demonstrate that several members of the PDI family are able to directly reduce this PrxIV disulphide and in the process become oxidized. Furthermore, we show that altering cellular expression of these proteins within the ER influences the efficiency with which PrxIV can be recycled. The oxidation of PDI family members by PrxIV is a highly efficient process and demonstrates how oxidation by H(2)O(2) can be coupled to disulphide formation. Oxidation of PDI by PrxIV may therefore increase efficiency of disulphide formation by Ero1 and also allows disulphide formation via alternative sources of H(2)O(2).  相似文献   

6.
Native protein disulfide bond formation in the endoplasmic reticulum (ER) requires protein disulfide isomerase (PDI) and Ero1p. Here we show that oxidizing equivalents flow from Ero1p to substrate proteins via PDI. PDI is predominantly oxidized in wild-type cells but is reduced in an ero1-1 mutant. Direct dithiol-disulfide exchange between PDI and Ero1p is indicated by the capture of PDI-Ero1p mixed disulfides. Mixed disulfides can also be detected between PDI and the ER precursor of carboxypeptidase Y (CPY). Further, PDI1 is required for the net formation of disulfide bonds in newly synthesized CPY, indicating that PDI functions as an oxidase in vivo. Together, these results define a pathway for protein disulfide bond formation in the ER. The PDI homolog Mpd2p is also oxidized by Ero1p.  相似文献   

7.
Pathways for protein disulphide bond formation   总被引:16,自引:0,他引:16  
The folding of many secretory proteins depends upon the formation of disulphide bonds. Recent advances in genetics and cell biology have outlined a core pathway for disulphide bond formation in the endoplasmic reticulum (ER) of eukaryotic cells. In this pathway, oxidizing equivalents flow from the recently identified ER membrane protein Ero1p to secretory proteins via protein disulphide isomerase (PDI). Contrary to prior expectations, oxidation of glutathione in the ER competes with oxidation of protein thiols. Contributions of PDI homologues to the catalysis of oxidative folding will be discussed, as will similarities between eukaryotic and prokaryotic disulphide-bond-forming systems.  相似文献   

8.
Formation of disulphide bonds within the mammalian endoplasmic reticulum (ER) requires the combined activities of Ero1α and protein disulphide isomerase (PDI). As Ero1α produces hydrogen peroxide during oxidation, regulation of its activity is critical in preventing ER-generated oxidative stress. Here, we have expressed and purified recombinant human Ero1α and shown that it has activity towards thioredoxin and PDI. The activity towards PDI required the inclusion of glutathione to ensure sustained oxidation. By carrying out site-directed mutagenesis of cysteine residues, we show that Ero1α is regulated by non-catalytic disulphides. The midpoint reduction potential (E°′) of the regulatory disulphides was calculated to be approximately −275 mV making them stable in the redox conditions prevalent in the ER. The stable regulatory disulphides were only partially reduced by PDI (E°′~−180 mV), suggesting either that this is a mechanism for preventing excessive Ero1α activity and oxidation of PDI or that additional factors are required for Ero1α activation within the mammalian ER.  相似文献   

9.
Many proteins of the secretory pathway contain disulfide bonds that are essential for structure and function. In the endoplasmic reticulum (ER), Ero1 alpha and Ero1 beta oxidize protein disulfide isomerase (PDI), which in turn transfers oxidative equivalents to newly synthesized cargo proteins. However, oxidation must be limited, as some reduced PDI is necessary for disulfide isomerization and ER-associated degradation. Here we show that in semipermeable cells, PDI is more oxidized, disulfide bonds are formed faster, and high molecular mass covalent protein aggregates accumulate in the absence of cytosol. Addition of reduced glutathione (GSH) reduces PDI and restores normal disulfide formation rates. A higher GSH concentration is needed to balance oxidative folding in semipermeable cells overexpressing Ero1 alpha, indicating that cytosolic GSH and lumenal Ero1 alpha play antagonistic roles in controlling the ER redox. Moreover, the overexpression of Ero1 alpha significantly increases the GSH content in HeLa cells. Our data demonstrate tight connections between ER and cytosol to guarantee redox exchange across compartments: a reducing cytosol is important to ensure disulfide isomerization in secretory proteins.  相似文献   

10.
Ero1-α and endoplasmic reticulum (ER) oxidoreductases of the protein disulfide isomerase (PDI) family promote the efficient introduction of disulfide bonds into nascent polypeptides in the ER. However, the hierarchy of electron transfer among these oxidoreductases is poorly understood. In this paper, Ero1-α–associated oxidoreductases were identified by proteomic analysis and further confirmed by surface plasmon resonance. Ero1-α and PDI were found to constitute a regulatory hub, whereby PDI induced conformational flexibility in an Ero1-α shuttle cysteine (Cys99) facilitated intramolecular electron transfer to the active site. In isolation, Ero1-α also oxidized ERp46, ERp57, and P5; however, kinetic measurements and redox equilibrium analysis revealed that PDI preferentially oxidized other oxidoreductases. PDI accepted electrons from the other oxidoreductases via its a′ domain, bypassing the a domain, which serves as the electron acceptor from reduced glutathione. These observations provide an integrated picture of the hierarchy of cooperative redox interactions among ER oxidoreductases in mammalian cells.  相似文献   

11.
Protein disulfide isomerase (PDI) is the archetypal enzyme involved in the formation and reshuffling of disulfide bonds in the endoplasmic reticulum (ER). PDI achieves its redox function through two highly conserved thioredoxin domains, and PDI can also operate as an ER chaperone. The substrate specificities and the exact functions of most other PDI family proteins remain important unsolved questions in biology. Here, we characterize a new and striking member of the PDI family, which we have named protein disulfide isomerase-like protein of the testis (PDILT). PDILT is the first eukaryotic SXXC protein to be characterized in the ER. Our experiments have unveiled a novel, glycosylated PDI-like protein whose tissue-specific expression and unusual motifs have implications for the evolution, catalytic function, and substrate selection of thioredoxin family proteins. We show that PDILT is an ER resident glycoprotein that liaises with partner proteins in disulfide-dependent complexes within the testis. PDILT interacts with the oxidoreductase Ero1alpha, demonstrating that the N-terminal cysteine of the CXXC sequence is not required for binding of PDI family proteins to ER oxidoreductases. The expression of PDILT, in addition to PDI in the testis, suggests that PDILT performs a specialized chaperone function in testicular cells. PDILT is an unusual PDI relative that highlights the adaptability of chaperone and redox function in enzymes of the endoplasmic reticulum.  相似文献   

12.
Protein-disulfide isomerase (PDI) and sulfhydryl oxidase endoplasmic reticulum oxidoreductin-1α (Ero1α) constitute the pivotal pathway for oxidative protein folding in the mammalian endoplasmic reticulum (ER). Ero1α oxidizes PDI to introduce disulfides into substrates, and PDI can feedback-regulate Ero1α activity. Here, we show the regulatory disulfide of Ero1α responds to the redox fluctuation in ER very sensitively, relying on the availability of redox active PDI. The regulation of Ero1α is rapidly facilitated by either a or a′ catalytic domain of PDI, independent of the substrate binding domain. On the other hand, activated Ero1α specifically binds to PDI via hydrophobic interactions and preferentially catalyzes the oxidation of domain a′. This asymmetry ensures PDI to function simultaneously as an oxidoreductase and an isomerase. In addition, several PDI family members are also characterized to be potent regulators of Ero1α. The novel modes for PDI as a competent regulator and a specific substrate of Ero1α govern efficient and faithful oxidative protein folding and maintain the ER redox homeostasis.  相似文献   

13.
In the major pathway for protein disulfide-bond formation in the endoplasmic reticulum (ER), oxidizing equivalents flow from the conserved ER-membrane protein Ero1p to secretory proteins via protein disulfide isomerase (PDI). Herein, a mutational analysis of the yeast ERO1 gene identifies two pairs of conserved cysteines likely to form redox-active disulfide bonds in Ero1p. Cys100, Cys105, Cys352, and Cys355 of Ero1p are important for oxidative protein folding and for cell viability, whereas Cys90, Cys208, and Cys349 are dispensable for these functions. Substitution of Cys100 with alanine impedes the capture of Ero1p-Pdi1p mixed-disulfide complexes from yeast, and also blocks oxidation of Pdi1p in vivo. Cys352 and Cys355 are required to maintain the fully oxidized redox state of Ero1p, and also play an auxiliary role in thiol-disulfide exchange with Pdi1p. These results suggest a model for the function of Ero1p wherein Cys100 and Cys105 form a redox-active disulfide bond that engages directly in thiol-disulfide exchange with ER oxidoreductases. The Cys352-Cys355 disulfide could then serve to reoxidize the Cys100-Cys105 cysteine pair, possibly through an intramolecular thiol-disulfide exchange reaction.  相似文献   

14.
In eukaryotes, disulfide bonds are formed in the endoplasmic reticulum, facilitated by the Ero1 (endoplasmic reticulum oxidoreductin 1) oxidase/PDI (protein disulfide-isomerase) system. Mammals have two ERO1 genes, encoding Ero1α and Ero1β proteins. Ero1β is constitutively expressed in professional secretory tissues and induced during the unfolded protein response. In the present work, we show that recombinant human Ero1β is twice as active as Ero1α in enzymatic assays. Ero1β oxidizes PDI more efficiently than other PDI family members and drives oxidative protein folding preferentially via the active site in the á domain of PDI. Our results reveal that Ero1β oxidase activity is regulated by long-range disulfide bonds and that Cys130 plays a critical role in feedback regulation. Compared with Ero1α, however, Ero1β is loosely regulated, consistent with its role as a more active oxidase when massive oxidative power is required.  相似文献   

15.
Cholera toxin (CT) is transported from the plasma membrane of host cells to the endoplasmic reticulum (ER) where the catalytic CTA1 subunit retro-translocates to the cytosol to induce toxicity. Our previous analyses demonstrated that the ER oxidoreductase protein disulfide isomerase (PDI) acts as a redox-dependent chaperone to unfold CTA1, a reaction postulated to initiate toxin retro-translocation. In its reduced state, PDI binds and unfolds CTA1; subsequent oxidation of PDI by Ero1α enables toxin release. Whether this in vitro model describes events in cells that control CTA1 retro-translocation is unknown. Here we show that down-regulation of Ero1α decreases retro-translocation of CTA1 by increasing reduced PDI and blocking efficient toxin release. Overexpression of Ero1α also attenuates CTA1 retro-translocation, an effect due to increased PDI oxidation, which prevents PDI from engaging the toxin effectively. Interestingly, Ero1α down-regulation increases interaction between PDI and Derlin-1, an ER membrane protein that is a component of the retro-translocation complex. These findings demonstrate that an appropriate Ero1α-PDI ratio is critical for regulating the binding–release cycle of CTA1 by PDI during retro-translocation, and implicate PDI''s redox state in targeting it to the retro-translocon.  相似文献   

16.
The formation of disulfide bonds in the endoplasmic reticulum (ER) of eukaryotic cells is catalyzed by the sulfhydryl oxidase, ER oxidoreductin 1 (Ero1), and protein-disulfide isomerase (PDI). PDI is oxidized by Ero1 to continuously introduce disulfides into substrates, and feedback regulates Ero1 activity by manipulating the regulatory disulfides of Ero1. In this study we find that yeast Ero1p is enzymatically active even with its regulatory disulfides intact, and further activation of Ero1p by reduction of the regulatory disulfides requires the reduction of non-catalytic Cys90-Cys97 disulfide in Pdi1p. The principal client-binding site in the Pdi1p b′ domain is necessary not only for the functional Ero1p-Pdi1p disulfide relay but also for the activation of Ero1p. We also demonstrate by complementary activation assays that the regulatory disulfides in Ero1p are much more stable than those in human Ero1α. These new findings on yeast Ero1p-Pdi1p interplay reveal significant differences from our previously identified mode of human Ero1α-PDI interplay and provide insights into the evolution of the eukaryotic oxidative protein folding pathway.  相似文献   

17.
Oxidative folding in the endoplasmic reticulum (ER) involves ER oxidoreductin 1 (Ero1)-mediated disulfide formation in protein disulfide isomerase (PDI). In this process, Ero1 consumes oxygen (O2) and releases hydrogen peroxide (H2O2), but none of the published Ero1 crystal structures reveal any potential pathway for entry and exit of these reactants. We report that additional mutation of the Cys208–Cys241 disulfide in hyperactive Ero1α (Ero1α-C104A/C131A) potentiates H2O2 production, ER oxidation, and cell toxicity. This disulfide clamps two helices that seal the flavin cofactor where O2 is reduced to H2O2. Through its carboxyterminal active site, PDI unlocks this seal by forming a Cys208/Cys241-dependent mixed-disulfide complex with Ero1α. The H2O2-detoxifying glutathione peroxidase 8 also binds to the Cys208/Cys241 loop region. Supported by O2 diffusion simulations, these data describe the first enzymatically controlled O2 access into a flavoprotein active site, provide molecular-level understanding of Ero1α regulation and H2O2 production/detoxification, and establish the deleterious consequences of constitutive Ero1 activity.  相似文献   

18.
The sulfhydryl oxidase Ero1 oxidizes protein disulfide isomerase (PDI), which in turn catalyzes disulfide formation in proteins folding in the endoplasmic reticulum (ER). The extent to which other members of the PDI family are oxidized by Ero1 and thus contribute to net disulfide formation in the ER has been an open question. The yeast ER contains four PDI family proteins with at least one potential redox-active cysteine pair. We monitored the direct oxidation of each redox-active site in these proteins by yeast Ero1p in vitro. In this study, we found that the Pdi1p amino-terminal domain was oxidized most rapidly compared with the other oxidoreductase active sites tested, including the Pdi1p carboxyl-terminal domain. This observation is consistent with experiments conducted in yeast cells. In particular, the amino-terminal domain of Pdi1p preferentially formed mixed disulfides with Ero1p in vivo, and we observed synthetic lethality between a temperature-sensitive Ero1p variant and mutant Pdi1p lacking the amino-terminal active-site disulfide. Thus, the amino-terminal domain of yeast Pdi1p is on a preferred pathway for oxidizing the ER thiol pool. Overall, our results provide a rank order for the tendency of yeast ER oxidoreductases to acquire disulfides from Ero1p.  相似文献   

19.
The presence of correctly formed disulfide bonds is crucial to the structure and function of proteins that are synthesized in the endoplasmic reticulum (ER). Disulfide bond formation occurs in the ER owing to the presence of several specialized catalysts and a suitable redox potential. Work in yeast has indicated that the ER resident glycoprotein Ero1p provides oxidizing equivalents to newly synthesized proteins via protein disulfide isomerase (PDI). Here we show that Ero1-Lalpha, the human homolog of Ero1p, exists as a collection of oxidized and reduced forms and covalently binds PDI. We analyzed Ero1-Lalpha cysteine mutants in the presumed active site C(391)VGCFKC(397). Our results demonstrate that this motif is important for protein folding, structural integrity, protein half-life and the stability of the Ero1-Lalpha-PDI complex.  相似文献   

20.
For most of the proteins synthesized in the endoplasmic reticulum (ER), disulfide bond formation accompanies protein folding in a process called oxidative folding. Oxidative folding is catalyzed by a number of enzymes, including the family of protein disulfide isomerases (PDIs), as well as other proteins that supply oxidizing equivalents to PDI family proteins, like ER oxidoreductin 1 (Ero1). Oxidative protein folding in the ER is a basic vital function, and understanding its molecular mechanism is critical for the application of plants as protein production tools. Here, I review the recent research and progress related to the enzymes involved in oxidative folding in the plant ER. Firstly, nine groups of plant PDI family proteins are introduced. Next, the enzymatic properties of plant Ero1 are described. Finally, the cooperative folding by multiple PDI family proteins and Ero1 is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号