首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gustatory stimuli to the antennae, especially sucrose, are important for bees and are employed in learning paradigms as unconditioned stimulus. The present study identified primary antennal gustatory projections in the bee brain and determined the impact of stimulation of the antennal tip on antennal muscle activity and its plasticity. Central projections of antennal taste hairs contained axons of two morphologies projecting into the dorsal lobe, which is also the antennal motor centre. Putative mechanosensory axons arborised in a dorso-lateral area. Putative gustatory axons projected to a ventro-medial area. Bees scan gustatory and mechanical stimuli with their antennae using variable strategies but sensory input to the motor system has not been investigated in detail. Mechanical, gustatory, and electrical stimulation of the ipsilateral antennal tip were found to evoke short-latency responses in an antennal muscle, the fast flagellum flexor. Contralateral gustatory stimulation induced smaller responses with longer latency. The activity of the fast flagellum flexor was conditioned operantly by pairing high muscle activity with ipsilateral antennal sucrose stimulation. A proboscis reward was unnecessary for learning. With contralateral antennal sucrose stimulation, conditioning was unsuccessful. Thus, muscle activity induced by gustatory stimulation was important for learning success and conditioning was side-specific.  相似文献   

2.
Honeybees learn and discriminate excellently between different surface structures and different forms of objects, which they scan with their antennae. The sensory plate on the antennal tip plays a key role in the perception of mechanosensory and gustatory information. It is densely covered with small tactile hairs and carries a few large taste hairs. Both types of sensilla contain a mechanoreceptor, which is involved in the antennal scanning of an object. Our experiments test the roles of the mechanoreceptors on the antennal tip in tactile antennal learning and discrimination. Joints between head capsule and scapus and between scapus and pedicellus enable the bee to perform three-dimensional movements when they scan an object. The role of these joints in tactile antennal learning and discrimination is studied in separate experiments. The mechanoreceptors on the antennal tip were decisive for surface discrimination, but not for tactile acquisition or discrimination of shapes. When the scapus–pedicellus joint or the headcapsule–scapus joint was fixed on both antennae, tactile learning was still apparent but surface discrimination was abolished. Fixing both scapi to the head capsule reduced tactile acquisition.  相似文献   

3.
The antennal motor system is activated by the muscarinic agonist pilocarpine in the American cockroach Periplaneta americana, and its output patterns were examined both in restrained intact animals and in isolated CNS preparations. The three-dimensional antennal movements induced by the hemocoelic drug injection were analyzed in in vivo preparations. Pilocarpine effectively induced prolonged rhythmic movements of both antennae. The antennae tended to describe a spatially patterned trajectory, forming loops or the symbol of infinity (∞). Such spatial regularity is comparable to that during spontaneous tethered-walking. Rhythmic bursting activities of the antennal motor nerves in in vitro preparations were also elicited by bath application of pilocarpine. Cross-correlation analyses of the bursting spike activities revealed significant couplings among certain motor units, implying the spatial regularity of the antennal trajectory. The pilocarpine-induced rhythmic activity of antennal motor nerves was effectively suppressed by the muscarinic antagonist atropine. These results indicate that the activation of the antennal motor system is mediated by muscarinic receptors.  相似文献   

4.
Honeybees (Apis mellifera L.) were individually subjected to a classical conditioning procedure in order to obtain an olfactory conditioned proboscis extension response. To relate the behavioural response directly to antennal detection abilities, a technique was developped for coupling proboscis extension responses and electroantennogram recordings, with the stimulation being provided by the effluent of a gas chromatograph (GC). Bees were conditioned with a six-component mixture being part of oilseed rape (Brassica napus L.) floral volatiles, and tested with the individual components separated by GC. Responses of the conditioned bees were compared to those of unconditioned bees. No behavioural response was obtained in the control group, neither to the individual components nor to the mixture. Conditioning induced behavioural responses for three components, and an increase of electroantennogram responses for all components. A second experiment was conducted with an air entrainment extract of oilseed rape flower volatiles. Behavioural responses of conditioned and unconditioned bees were recorded. Responses obtained from conditioned bees tested with the air entrainment extract showed six groups of behaviourally active GC peaks. Unconditioned bees showed the same pattern of responses but at a lower level. The coupled technique described here appears to be a reliable tool for locating active components in a synthetic as well as in a natural mixture of floral volatiles. The effects of conditioning on odour discrimination and on its sensory correlates are discussed.  相似文献   

5.
Video recordings and single frame analysis were used to study the function of the second antennae of crayfish (Cherax destructor) as a sensory system in freely behaving animals. Walking crayfish move their antennae back and forth through horizontal angles of 100 degrees and more, relative to the body long axis. At rest, animals tend to hold their antennae at angular positions between 20 and 50 degrees. Movements of the two antennae are largely independent of each other. Before and during a turn of the body the ipsilateral antenna is moved into the direction of the turn. Solid objects are explored by repeatedly moving the antennae towards and across them. Both seeing and blinded crayfish can locate stationary objects following antennal contact. On antennal contact with a small novel object, a moving animal withdraws its antenna and attacks the object. When the antenna of a blinded crayfish is lightly touched with a brush the animal turns and attacks the point of stimulation. The direction taken and the distance covered during an attack can be correlated with: the angle at which the antenna is held at the moment of contact and the distance along the antennal flagellum at which the stimulus is applied. From behavioural evidence we conclude that crayfish use information about the angular position of their antennae and about the position of stimulated mechanoreceptors along the antennal flagellum to locate objects in their environment. We suggest ways in which an active tactile system-like the crayfish's antennae--could supply animals with information about the three-dimensional layout of their environment.  相似文献   

6.
Honey bees are a key-model in the study of learning and memory, because they show considerable learning abilities, their brain is well described and is accessible to a wide range of physiological recordings and treatments. We use in vivo calcium imaging to study olfactory perception in the bee brain, and combine this method to appetitive olfactory conditioning to unravel the neural substrates of olfactory learning. Odours are detected by receptor neurons on the antennae. Each receptor neuron projects to the first-order neuropile of the olfactory pathway, the antennal lobe, connecting to projection neurons in one of its 160 functional units, the glomeruli. In calcium imaging experiments, each odour elicits a particular activity pattern of antennal lobe glomeruli, according to a code conserved between individuals. The antennal lobe is also a site where the olfactory memory is formed. Using optical imaging, two studies have shown modulations of odour representation in the antennal lobe after learning, with different effects depending on the type of conditioning used. While simple differential conditioning (A + B- training) showed an increased calcium response to the reinforced odour, side-specific conditioning (A + B-/B + A- training) decorrelated the calcium responses of odours between brain sides. This difference may owe to the formation of different memories, which will be addressed in future work. By specifically staining antennal lobe neuronal subpopulations, we hope to be able in the future to study synaptic plasticity in the honey bee.  相似文献   

7.
Antennal movements of the honey bee can be conditioned operantly under laboratory conditions. Using this behavioural paradigm we have developed a preparation in which the activity of a single antennal muscle has been operantly conditioned. This muscle, the fast flagellum flexor muscle, is innervated by an identified motoneuron whose action potentials correlate 1:1 with the muscle potentials. The activity of the fast flagellum flexor muscle was recorded extracellularly from the scapus of the antenna. The animal was rewarded with a drop of sucrose solution whenever the muscle activity exceeded a defined reward threshold. The reward threshold was one standard deviation above the mean spontaneous frequency prior to conditioning. After ten conditioning trials, the frequency of the muscle potentials had increased significantly compared to the spontaneous frequency. The conditioned changes of frequency were observed for 30 min after conditioning. No significant changes of the frequency were found in the yoke control group. The firing pattern of the muscle potentials did not change significantly after conditioning or feeding. Fixing the antennal joints reduces or abolishes associative operant conditioning. The conditioned changes of the frequency of muscle potentials in the freely moving antenna are directly comparable to the behavioural changes during operant conditioning. Accepted: 29 March 2000  相似文献   

8.
Free-flying bees were conditioned on a vertical wall to a vertical tactile pattern consisting of parallel lines of grooves and elevations. The asymptote of the learning curve is reached after approximately 25 rewards. Bees can discriminate the conditioned vertical pattern from a horizontal or diagonal alternative. Angle discrimination is apparent only for relatively coarse tactile cues. The proboscis extension response of fixed bees was used to condition bees to a vertical tactile pattern which was presented to the antennae. The learning curve reaches an asymptote after 4 rewards. After 7 unrewarded extinction trials the conditioned responses are reduced to 50%. Bees show best discrimination for patterns whose edges they can scan with their antennae. The animals show a high degree of generalization by responding to an object irrespective of the trained pattern. Under laboratory conditions fixed bees can discriminate the angles and spatial wavelengths of fine tactile patterns consisting of parallel grooves. Bees can also discriminate forms and sizes of tactile patterns. They do not discriminate between different types of edges and between positive and negative forms. Accepted: 17 September 1998  相似文献   

9.
At night, honey bees pass through a physiological state that is similar to mammalian sleep. Like sleep in mammals, sleep-like behaviour in honey bees is an active process. This is expressed most clearly in these insects by spontaneous antennal movements which appear at irregular intervals throughout the night and interrupt episodes of antennal immobility. Here we present a newly developed video technique for the continuous recording of the position and movements of the bee's antennae. The same technique was used to record head inclination and ventilatory movements. Despite the constancy of the ambient temperature, the magnitudes of antennae-related parameters, as well as head inclination and ventilatory cycle duration, displayed dynamic unimodal time-courses which exhibited a high degree of temporal covariance. The similarity between these time-courses and the nightly time-course of the reaction threshold for a sensory stimulus, investigated previously, indicates that, in honey bees, deepest "sleep" and least ventilatory activity occur at the same time (in the 7th hour of the rest phase).Abbreviations DD continuous darkness - EMG electromyogram - LD periodic alternation between light (L) and darkness (D) - MEST Middle European Summer Time (UTC+2 h); - UV ultraviolet This paper is dedicated to Professor Martin Lindauer, who—to our knowledge—was the first to meticulously record the nightly behaviour of honey bees (Lindauer 1952) and who also inspired one of us (W.K.) to investigate antennal motility during nightly rest in these animals.  相似文献   

10.
The stick insect Carausius morosus continuously moves its antennae during locomotion. Active antennal movements may reflect employment of antennae as tactile probes. Therefore, this study treats two basic aspects of the antennal motor system: First, the anatomy of antennal joints, muscles, nerves and motoneurons is described and discussed in comparison with other species. Second, the typical movement pattern of the antennae is analysed, and its spatio-temporal coordination with leg movements described. Each antenna is moved by two single-axis hinge joints. The proximal head-scape joint is controlled by two levator muscles and a three-partite depressor muscle. The distal scape-pedicel joint is controlled by an antagonistic abductor/ adductor pair. Three nerves innervate the antennal musculature, containing axons of 14-17 motoneurons, including one common inhibitor. During walking, the pattern of antennal movement is rhythmic and spatiotemporally coupled with leg movements. The antennal abduction/adduction cycle leads the protraction/retraction cycle of the ipsilateral front leg with a stable phase shift. During one abduction/adduction cycle there are typically two levation/depression cycles, however, with less strict temporal coupling than the horizontal component. Predictions of antennal contacts with square obstacles to occur before leg contacts match behavioural performance, indicating a potential role of active antennal movements in obstacle detection.  相似文献   

11.
Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb''s law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication.  相似文献   

12.
Okada J  Kanamaru Y  Toh Y 《Zoological science》2002,19(11):1201-1210
The voluntary movement of antennae of blinded cockroaches was examined in the tethered-walking condition. An object of metal plate was presented to a tip of a single antenna in order to induce tactile orientation behavior. Horizontal movements of the antenna before and during the object presentation were analyzed both before and after ablation of a mechanosensory organ, the scapal hair plate (S-HP), at the base of antenna. The resting antennal position shifted outwardly by about 20 degrees after the S-HP ablation. Spontaneous antennal movements in ablated animals became stiff and wider ranged. The tactile object was set at two different horizontal positions, 45 degrees and 90 degrees clockwise to the head, for the right side antenna. The number of contacts in a constant test period was significantly decreased in the tests at 45 degrees after ablation. Trajectories of antennal movements before and after contacts were categorized into four patterns. In the case that an antenna made contact with the object during its abduction (outward) movement, it then passed the object outwardly or withdrew inwardly. These were termed "outward-pass (O-P)" and "outward-withdrawal (O-W)" patterns, respectively. Similarly, contacts during the adduction (inward) movement were divided into "inward-pass (I-P)" or "inward-withdrawal (I-W)" pattern. Significant effects of the S-HP ablation appeared in the tests at 90 degrees : the I-P pattern mostly disappeared and was replaced by the I-W pattern. The results strongly suggest that the S-HP has crucial roles for controlling both spontaneous and stimulated movements of the cockroach antenna.  相似文献   

13.
The role of the antennae in courtship was studied by removing the antennae bilaterally from both male and female cockroaches, which were then paired with intact animals. These experimental pairings were compared with each other and with pairings of normal animals. Significant deviation from normal behaviour occurs in both the deantennated and the intact members of experimental pairs. When males are deantennated and paired with intact females the timing of courtship is prolonged and male cockroaches misdirect many of their copulation attempts. Under these conditions the intact female cockroaches perform some behaviours more frequently, in particular mounting and palpation. When deantennated females are paired with intact males, very little courtship ensues. The results suggest that information important to the progress of courtship is provided by both antennal inputs and antennal movements, and that the cockroaches are capable of some behavioural flexibility when deprived of this information.  相似文献   

14.
Although the forelegs of honeybees are one of their main gustatory appendages, tarsal gustation in bees has never been systematically studied. To provide a more extensive account on honeybee tarsal gustation, we performed a series of behavioral experiments aimed at characterizing (1) tarsal sucrose sensitivity under different experimental conditions and (2) the capacity of tarsal sucrose stimulation to support olfactory conditioning. We quantified the proboscis extension reflex to tarsal sucrose stimulation and to odors paired with tarsal sucrose stimulation, respectively. Our experiments show that tarsal sucrose sensitivity is lower than antennal sucrose sensitivity and can be increased by starvation time. In contrast, antennae amputation decreases tarsal sucrose sensitivity. Furthermore, we show that tarsal sucrose stimulation can support olfactory learning and memory even if the acquisition level reached is relatively low (40%).  相似文献   

15.
We previously studied a conditioning paradigm to associate the proboscis extension reflex (PER) with monochromatic light (conditioned stimulus; CS) in harnessed honeybees. Here, we established a novel conditioning paradigm to associate the PER with a motion cue generated using graphics interchange format (GIF) animations with a speed of 12 mm/s speed and a frame rate of 25 Hz as the CS, which were projected onto a screen consisting of a translucent circular cone that largely covered the visual field of the harnessed bee using two liquid crystal projectors. The acquisition rate reached a plateau at approximately 40% after seven trials, indicating that the bees were successfully conditioned with the motion cue. We demonstrated four properties of the conditioning paradigm. First, the acquisition rate was enhanced by antennae deprivation, suggesting that sensory input from the antennae interferes with the visual associative learning. Second, bees conditioned with a backward-direction motion cue did not respond to the forward-direction, suggesting that bees can discriminate the two directions in this paradigm. Third, the bees can retain memory for motion cue direction for 48 h. Finally, the acquisition rate did not differ significantly between foragers and nurse bees. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
In honey bees, complex behaviours such as associative learning correlate with responsiveness to sucrose. In these behaviours, the subjective evaluation of a sucrose stimulus influences the behavioural performance. Habituation is a well-known form of non-associative learning. In bees, the proboscis extension response can be habituated by repeatedly stimulating the antennae with a low sucrose concentration. A high sucrose concentration can dishabituate the response. This study tests whether habituation correlates with responsiveness to sucrose in bees of different behavioural states and in bees which are habituated with different sucrose concentrations. Habituation and dishabituation in newly emerged bees, 5-day-old bees and foragers strongly correlated with responsiveness to sucrose. Bees with high responsiveness to sucrose displayed a lower degree of habituation and showed greater dishabituation than bees with low responsiveness. The degree of habituation and dishabituation also depended on the concentration of the habituation stimulus. These experiments demonstrate for the first time in a non-associative learning paradigm that the subjective strength of a sucrose stimulus determines the behavioural performance. Non-associative learning shares this property with associative learning, which suggests that the two processes might rely on similar neural mechanisms.Abbreviations: GRS Gustatory response score - PER Proboscis extension response  相似文献   

17.
We recently identified changes in amine-receptor gene expression in the antennae of the honey bee that correlate with shifts in the behavioural responsiveness of worker bees towards queen mandibular pheromone. Here we examine whether variations in expression of amine-receptor genes are related to age and/or to behavioural state. Colonies with a normal age structure were used to collect bees of different ages, as well as pollen foragers of unknown age. Single- and double-cohort colonies were established also to generate nurses and pollen foragers of the same age. Amdop1 was the only gene examined that showed no significant change in expression levels across the age groups tested. However, expression of this gene was significantly higher in 6-day-old nurses than in pollen foragers of the same age. Levels of expression of Amdop2 were very variable, particularly during the first week of adult life, and showed no correlation with nursing or foraging behaviour. Amdop3 and Amtyr1 expression levels changed dramatically with age. Interestingly, Amtyr1 expression was significantly higher in 15-day-old pollen foragers than in same-age nurses, whereas the opposite was true for Amoa1. While Amoa1 expression in the antennae was lower in 6- and 15-day-old pollen foragers than in nurses of the same age, differences in gene expression levels between nurses and pollen foragers could not be detected in 22-day-old bees. Our data show dynamic modulation of gene expression in the antennae of worker bees and suggest a peripheral role for biogenic amines in regulating behavioural plasticity in the honey bee.  相似文献   

18.
The left and right antennae of stingless bees have different roles in learning and recall of olfactory memory. Antennal asymmetry in social behavior is reported here. Approaches and physical contacts were scored in dyads of stingless bees (Tetragonula carbonaria): dyads in which both bees had only their right antennae (left antennae removed) made significantly more physical contacts with each other than dyads in which both bees had only their left antennae. In dyads of one left and one right, it was found, unexpectedly, that the bee with a left antenna approached the bee with the right antenna more often that the other way around, and the bee with the left antenna often attacked (by biting) its hive mate. Hence, the low number of contacts in dyads of bees using their left antennae appears to be due to mutual avoidance. Whereas use of the right antenna stimulates positive contact, the left stimulates avoidance or attack. Via such left-right asymmetries, intact bees may compute behavior directed towards friend and foe. Such antennal asymmetry may have evolved concomitantly with eusocial behavior. We found no evidence that it was associated with significant differences in the number of olfactory or non-olfactory sensilla on the left versus right antenna.  相似文献   

19.
Honey bees (Apis mellifera L.) are eusocial insects and well known for their complex division of labor and associative learning capability1, 2. The worker bees spend the first half of their life inside the dark hive, where they are nursing the larvae or building the regular hexagonal combs for food (e.g. pollen or nectar) and brood3. The antennae are extraordinary multisensory feelers and play a pivotal role in various tactile mediated tasks4, including hive building5 and pattern recognition6. Later in life, each single bee leaves the hive to forage for food. Then a bee has to learn to discriminate profitable food sources, memorize their location, and communicate it to its nest mates7. Bees use different floral signals like colors or odors7, 8, but also tactile cues from the petal surface9 to form multisensory memories of the food source. Under laboratory conditions, bees can be trained in an appetitive learning paradigm to discriminate tactile object features, such as edges or grooves with their antennae10, 11, 12, 13. This learning paradigm is closely related to the classical olfactory conditioning of the proboscis extension response (PER) in harnessed bees14. The advantage of the tactile learning paradigm in the laboratory is the possibility of combining behavioral experiments on learning with various physiological measurements, including the analysis of the antennal movement pattern.  相似文献   

20.
Brain and behavioural lateralization at the population level has been recently hypothesized to have evolved under social selective pressures as a strategy to optimize coordination among asymmetrical individuals. Evidence for this hypothesis have been collected in Hymenoptera: eusocial honey bees showed olfactory lateralization at the population level, whereas solitary mason bees only showed individual-level olfactory lateralization. Here we investigated lateralization of odour detection and learning in the bumble bee, Bombus terrestris L., an annual eusocial species of Hymenoptera. By training bumble bees on the proboscis extension reflex paradigm with only one antenna in use, we provided the very first evidence of asymmetrical performance favouring the right antenna in responding to learned odours in this species. Electroantennographic responses did not reveal significant antennal asymmetries in odour detection, whereas morphological counting of olfactory sensilla showed a predominance in the number of olfactory sensilla trichodea type A in the right antenna. The occurrence of a population level asymmetry in olfactory learning of bumble bee provides new information on the relationship between social behaviour and the evolution of population-level asymmetries in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号