首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The one- or two-electron oxidation of thyroglobulin by the thyroid peroxidase system was found to be regulated by the iodine content of thyroglobulin. The catalytic intermediate of thyroid peroxidase observed at steady state of the reaction was Compound I and II when the iodine content in thyroglobulin was 0.2 and 0.7%, respectively, apparent rate constants for the rate-limiting steps being estimated at 4.7 x 10(7) and 4.8 x 10(4) M-1 S-1. The thyroglobulin-mediated oxidation of GSH occurred by way of two-electron transfer at 0.2% iodine content and by way of one-electron transfer at 0.7% iodine content. The spin-trapping experiment with 5,5-dimethyl-1-pyrroline-N-oxide showed that glutathione radicals were formed in the latter reaction but not in the former. In the reactions of thyroid peroxidase, the one- and two-electron oxidations of ascorbate were also mediated by 0.2 and 0.7% iodine thyroglobulins, respectively. The reactions were analyzed and mimicked with the use of p-cresol and p-acetaminophenol as a mediator in the reactions of lactoperoxidase and thyroid peroxidase.  相似文献   

2.
Stopped flow experiments were carried out with purified hog thyroid peroxidase (A413 nm/A280 nm = 0.42). It reacted with H2O2 to form Compound I with a rate constant of 7.8 X 10(6) M-1 s-1. Compound I was reduced to Compound II by endogeneous donor with a half-life of 0.36 s. Compound I was reduced by tyrosine directly to the ferric enzyme with a rate constant of 7.5 X 10(4) M-1 s-1. Tyrosine could also reduce Compound II to the ferric enzyme with a rate constant of 4.3 X 10(2) M-1 s-1. Methylmercaptoimidazole accelerated the conversion of Compound I to Compound II and reacted with Compound II to form an inactivated form, which was discernible spectrophotometrically. The reactions of thyroid peroxidase with methylmercaptoimidazole quite resembled those of lactoperoxidase, but occurred at higher speeds. The absorption spectra of thyroid peroxidase were similar to those of lactoperoxidase and intestinal peroxidase, but obviously different from those of metmyoglobin, horseradish peroxidase, and chloroperoxidase. Similarity and dissimilarity between thyroid peroxidase and lactoperoxidase are discussed.  相似文献   

3.
Free diiosotyrosine exerts two opposite effects on the reactions catalyzed by thyroid peroxidase, thyroglobulin iodination and thyroid hormone formation. 1. Inhibition of thyroglobulin iodination catalyzed by thyroid peroxidase was observed when free diiodotyrosine concentration was higher than 5 muM. This inhibition was competitive, suggesting that free diiodotyrosine interacts with the substrate site(s) of thyroid peroxidase. Free diiodotyrosine also competively inhibited iodide peroxidation to I2. 2. Free diiodotyrosine, when incubated with thyroid peroxidase in the absence of iodide was recovered unmodified; in the presence of iodide an exchange reaction was observed between the iodine atoms present in the diiodotyrosine molecule and iodide present in the medium. Using 14C-labelled diiodotyrosine, 14C-labelled non-iodinated products were also observed, showing that deiodination occurred as a minor degradation pathway. However, no monoiodo[14C]tyrosine or E114C]tyrosine were observed. Exchange reaction between free diiototyrosine and iodide is therefore direct and does not imply deiodination-iodination intermediary steps. Thyroglobulin inhibits diiodotyrosine-iodide exchange and vice versa, again suggesting competition for both reactions. These results support, by a different experimental approach, the two-site model for peroxidase previously described by us in this journal. 3. Free diiodotyrosine when present at a very low concentration, 0.05 muM, exerts a stimulatory effect on throid hormones synthesis. The relationship between diiodotyrosine concentration and thyroid hormone synthesis give an S-shaped curve, suggesting that free diiodotyrosine acts as a regulatory ligand for thyroid peroxidase. Evidence is also presented that free diiodotyrosine is not incorporated into thyroid hormones. Therefore, thyroid peroxidase catalyzes only intra-molecular coupling between iodotyrosine hormonogenic residues. 4. Finally, although no direct proof exists that these free diiodotyrosine effects upon thyroglobulin iodination and thyroid hormone synthesis are physiologically significant, such a possibility deserves further investigation.  相似文献   

4.
Summary Depositing ofdl-1-amino-2-(p-hydroxyphenyl)-ethylphosphonic acid (Tyr-P) on the chicken embryo induced a dose dependent decrease of the iodine uptake by the embryonic thyroid. Tyr-P interfered on iodination of tyrosine when tested with hog thyroid peroxidase (TPO) and with bovine lactoperoxidase (LPO); the analogue was recognized by the two enzymes but its affinity for TPO and LPO was respectively 3 and 7 fold higher compared with that of the natural substrate, suggesting that Tyr-P may act as an iodine trap.  相似文献   

5.
Glutathione (GSH) was oxidized to GSSG in the presence of H2O2, tyrosine, and peroxidase. During the GSH oxidation catalyzed by lactoperoxidase, O2 was consumed and the formation of glutathione free radical was confirmed by ESR of its 5,5'-dimethyl-1-pyrroline-N-oxide adduct. When lactoperoxidase was replaced by thyroid peroxidase in the reaction system, the consumption of O2 and the formation of the free radical became negligibly small. These results led us to conclude that, in the presence of H2O2 and tyrosine, lactoperoxidase and thyroid peroxidase caused the one-electron and two-electron oxidations of GSH, respectively. It was assumed that GSH is oxidized by primary oxidation products of tyrosine, which are phenoxyl free radicals in lactoperoxidase reactions and phenoxyl cations in thyroid peroxidase reactions. When tyrosine was replaced by diiodotyrosine or 2,6-dichlorophenol, the difference in the mechanism between lactoperoxidase and thyroid peroxidase disappeared and both caused the one-electron oxidation of GSH. Iodides also served as an effective mediator of GSH oxidation coupled with the peroxidase reactions. In this case the two peroxidases both caused the two-electron oxidation of GSH.  相似文献   

6.
One-electron oxidation of Trolox C (a vitamin E analogue) by peroxidases   总被引:1,自引:0,他引:1  
The oxidation mechanism of Trolox C (a vitamin E analogue) by peroxidases was examined by stopped flow and ESR techniques. The results revealed that during the oxidation of Trolox C, peroxidase Compound II was the catalytic intermediate. The rate constants for the reaction of Compound II with Trolox C, which should be the rate-determining step, were estimated to be 2.1 X 10(4) and 7.2 X 10(3) M-1.s-1 for horseradish peroxidase and lactoperoxidase, respectively, at pH 6.0. The formation of the Trolox C radical was followed by ESR. The time course of the signal was similar to that of the optical absorbance changes at 440 nm, assigned as the peak of the Trolox C radical. The signal exhibited a hyperfine structure characteristic of phenoxyl radicals. From an estimation of the radical concentration in the steady state and the velocity of the radical formation, the dismutation constant was calculated to be 5 X 10(5) M-1.s-1. The concentration of the signal in the steady state was reduced by the addition of GSH. The spectrum changed from that of the Trolox C radical to that of the ascorbate radical when the reaction was carried out in the presence of ascorbate.  相似文献   

7.
8.
Slices of dog thyroid gland were incubated with liposomes consisting of (125)I-labelled phosphatidylcholine (the iodine was covalently linked to unsaturated fatty acyl chains). The (125)I label of (125)I-labelled liposomes was incorporated into thyroid protein and/or thyroglobulin at a higher rate than was the (131)I label of either Na(131)I or (131)I(2). The iodine was shown to be protein-bound by the co-migration of the labelled iodine with protein under conditions where free iodine, iodide and lipid-bound iodine were removed from protein. The uptake of iodine from the iodinated phospholipid was probably due to phospholipid exchange between the iodinated liposomes and the thyroid cell membrane, since (a) (14)C-labelled phospholipid was metabolized to (14)CO(2) and (b) many lipids in the tissue slice became (14)C-labelled. A very strong inhibition of iodide ;uptake' from Na(131)I, caused by thiosulphate, produced only a minor inhibition of the incorporation of (125)I from (125)I-labelled liposomes into thyroid protein and/or thyroglobulin. This implies that free iodide may not necessarily be formed from the iodinated phospholipids before their entrance or utilization in the cell. Synthetic polytyrosine polypeptide suspensions showed some iodination by (131)I-labelled liposomes. In tissues with low tyrosine contents, such as liver and kidney, only a trace uptake was observed. Salivary gland showed some uptake. Endoplasmic reticulum of thyroid gland showed a higher iodine uptake than that of the corresponding plasma membranes. These experiments, together with the demonstration of the diet-dependent presence of iodinated phospholipids in dog thyroid, leads us to suggest that iodination of the membrane phospholipids of thyroid cells may be directly or indirectly involved at some stage in the synthesis of thyroglobulin, or exists as a scavenger mechanism, to re-utilize and/or recover released iodine from unstable compounds inside the thyroid cell.  相似文献   

9.
The reaction kinetics of the peroxidase activity of prostaglandin H synthase have been examined with 15-hydroperoxyeicosatetraenoic acid and hydrogen peroxide as substrates and tetramethylphenylenediamine as cosubstrate. The apparent Km and Vmax values for both hydroperoxides were found to increase linearly with the cosubstrate concentration. The overall reaction kinetics could be interpreted in terms of an initial reaction of the synthase with hydroperoxide to form an intermediate equivalent to horseradish peroxidase Compound I, followed by reduction of this intermediate by cosubstrate to regenerate the resting enzyme. The rate constants estimated for the generation of synthase Compound I were 7.1 X 10(7) M-1 s-1 with the lipid hydroperoxide and 9.1 X 10(4) M-1 s-1 with hydrogen peroxide. The rate constants estimated for the rate-determining step in the regeneration of resting enzyme by cosubstrate were 9.2 X 10(6) M-1 s-1 in the case of the reaction with lipid hydroperoxide and 3.5 X 10(6) M-1 s-1 in the case of reaction with hydrogen peroxide. The intrinsic affinities of the synthase peroxidase for substrate (Ks) were estimated to be on the order of 10(-8) M for lipid hydroperoxide and 10(-5) M for hydrogen peroxide. These affinities are quite similar to the reported affinities of the synthase for these hydroperoxides as activators of the cyclooxygenase. The peroxidase activity was found to be progressively inactivated during the peroxidase reaction. The rate of inactivation of the peroxidase was increased by increases in hydroperoxide level, and decreased by increases in peroxidase cosubstrate. The inactivation of the peroxidase appeared to occur by a hydroperoxide-dependent process, originating from synthase Compound I or Compound II.  相似文献   

10.
In the course of lactoperoxidase-catalysed I- oxidation, which is a model for the initial step of thyroid hormone biosynthesis, irreversible enzyme inactivation can occur if free molecular iodine (I2) or other oxidized iodine species accumulate. Evidence is presented that the breakdown of the catalytic activity is the result of the iodination of the peroxidase-apoprotein. This kind of enzyme inactivation, which can be prevented by iodine acceptors' such as thyroglobulin or high concentrations of I-, may well play a role in the regulation of the synthesis of thyroid hormones in vivo.  相似文献   

11.
C Marriq  P J Lejeune  N Venot  L Vinet 《FEBS letters》1989,242(2):414-418
At moderate iodination levels (20 iodine atoms/mol) human thyroglobulin (hTg) produces after reduction a hormone-rich peptide of 26 kDa which contains the preferential hormonogenic 'acceptor' tyrosine (Tyr 5) of the protein. The site of cleavage of the hTg chain was demonstrated by analysis of the 26 kDa tryptic hydrolysis products. It consistently yielded the peptide Gln-82-Val-129 which consequently made it possible to localize the hTg chain cleavage at tyrosine residue 130. Evidence for tyrosine involvement in hTg cleavage during thyroid hormone formation supports the hypothesis that peptide bond cleavage would occur at the 'donor' tyrosine residue and suggests that tyrosine 130 would be the donor site reacting with the major hormone-forming acceptor site (Tyr 5) of hTg.  相似文献   

12.
The reaction of prostaglandin H synthase with prostaglandin G2, the physiological substrate for the peroxidase reaction, was examined by rapid reaction techniques at 1 degree C. Two spectral intermediates were observed and assigned to higher oxidation states of the enzymes. Intermediate I was formed within 20 ms in a bimolecular reaction between the enzyme and prostaglandin G2 with k1 = 1.4 x 10(7) M-1 s-1. From the resemblance to compound I of horseradish peroxidase, the structure of intermediate I was assigned to [(protoporphyrin IX)+.FeIVO]. Between 10 ms and 170 ms intermediate II was formed from intermediate I in a monomolecular reaction with k2 = 65 s-1. Intermediate II, spectrally very similar to compound II of horseradish peroxidase or complex ES of cytochrome-c peroxidase, was assigned to a two-electron oxidized state [(protoporphyrin IX)FeIVO] Tyr+. which was formed by an intramolecular electron transfer from tyrosine to the porphyrin-pi-cation radical of intermediate I. A reaction scheme for prostaglandin H synthase is proposed where the tyrosyl radical of intermediate II activates the cyclooxygenase reaction.  相似文献   

13.
Pig thyroid slices were incubated with Na131I and the 17--19S 131I-labeled thyroglobulin isolated was subjected to dissociation with 0.3 mM sodium dodecyl sulphate SDS) on sucrose density gradient centrifugation and to iodoamino acid analysis. During the incubation, initially dissociable thyroglobulin was gradually altered to 0.3 mM SDS-resistant species with increasing incorporation of iodine. Microsome-bound, poorly iodinated thyroglobulin and preformed thyroglobulin were chemically iodinated and then subjected to analysis of dissociability and iodoamino acid contents with newly incorporated iodine. The results indicated that the behavior of the former thyroglobulin resembled that of 131I-thyroglobulin obtained from the slices. Then, thyroid slices were incubated for 3 min with Na131I and 3H-leucine with or without 10-min chase incubation. The sucrose density gradient centrifugation patterns of 131I and 3H-radioactivity of cytoplasmic extracts indicated that 131I-thyroglobulin is contained in particulates, especially in vesicles with low density(d=1.12) and that some of them are released into the soluble fraction within 10 min. The vesicles contained peroxidase and NADH-cytochrome c reductase, and are probably exocytotic vesicles in the apical area of cytoplasm of follicular cells. No positive evidence was obtained that plasma membranes participate in the iodination of thyroglobulin under the present experimental conditions. These results suggest that, in the incubation of thyroid slices, iodine atoms are preferentially incorporated into newly synthesized, less iodinated thyroglobulin, rather than preformed thyroglobulin, and that the iodination occurs, at least to a certain degree, in apical vesicles before the thyroglobulin is secreted into the colloid lumen.  相似文献   

14.
Thyroglobulin of very low iodine content has been prepared from a single non-toxic human goitre. The initial iodine content of the protein (0.038%) has been increased to levels of 0.16% and 0.85% by in vitro treatment with thyroid peroxidase and the resulting proteins studied with respect to their intrinsic fluorescence, circular dichroism spectra and binding of the hydrophobic probe 1,8-anilinonaphthalene sulfonic acid (ANS). While significant differences were observed between levels of iodination in both the ANS binding and intrinsic fluorescence of the thyroglobulin, no significant differences in the near and far UV circular dichroism spectra of the protein as a function of iodine content were observed. These data suggest that, the iodination of thyroglobulin effects specific areas of the protein without significant disruption of its overall secondary structure.  相似文献   

15.
Iodine and thyroglobulin concentrations, as well as iodine, T3, T4 and sialic acid contents of thyroglobulin, were measured in thyroid glands collected postmortem from 42 human premature or term newborns and infants. Three groups were considered: very preterm newborns (24-32 postmenstrual weeks, < 5 days postnatal life), preterm and term newborns (34-41 postmenstrual weeks, < 5 days postnatal life) and infants (born at term, postnatal age 1-8 months). Five very preterm and seven preterm newborns received a daily dose of 10 microg/kg L-T4 for at least 3 days. Thyroid weight and sialic acid content of thyroglobulin progressed with maturation. Intrathyroidal concentrations of iodine and thyroglobulin did not increase significantly before the 42nd week of postmenstrual age. The level of thyroglobulin iodination increased during the postnatal life, except in the very preterm neonates. T4 and T3 content of thyroglobulin was directly proportional to its degree of iodination and positively related to its sialic acid content. L-T4 treatment of preterm newborns increased thyroglobulin iodination and T4-T3 content, without increasing thyroglobulin concentration in the thyroid. It was concluded that the storage of thyroglobulin and iodine in the thyroid develops around term birth. This, associated with the resulting rapid theoretical turnover of the intrathyroidal pool of T4 in Tg, could be an important factor of increased risk of neonatal hypothyroxinemia in the premature infants. The L-T4 treatment of preterm newborns does not accelerate the maturational process of the thyroid gland.  相似文献   

16.
The transient state kinetics of the oxidation of reduced nicotinamide adenine dinucleotide (NADH) by horseradish peroxidase compound I and II (HRP-I and HRP-II) was investigated as a function of pH at 25.0 degrees C in aqueous solutions of ionic strength 0.11 using both a stopped-flow apparatus and a conventional spectrophotometer. In agreement with studies using many other substrates, the pH dependence of the HRP-I-NADH reaction can be explained in terms of a single ionization of pKa = 4.7 +/- 0.5 at the active site of HRP-I. Contrary to studies with other substrates, the pH dependence of the HRP-II-NADH reaction can be interpreted in terms of a single ionization with pKa of 4.2 +/- 1.4 at the active site of HRP-II. An apparent reversibility of the HRP-II-NADH reaction was observed. Over the pH range of 4-10 the rate constant for the reaction of HRP-I with NADH varied from 2.6 X 10(5) to 5.6 X 10(2) M-1 s-1 and of HRP-II with NADH varied from 4.4 X 10(4) to 4.1 M-1 s-1. These rate constants must be taken into consideration to explain quantitatively the oxidase reaction of horseradish peroxidase with NADH.  相似文献   

17.
The reactivity of cuprous stellacyanin as a quinone and semiquinone reductase has been examined. Rate constants (25.0 degrees C) measured for the oxidation of stellacyanin by 1,4-benzoquinone and benzosemiquinone are 2.3 X 10(4) M-1 s-1 (delta H not equal to = 4.4 kcal/mol, delta S not equal to = -24 eu) and 5.1 X 10(6) M-1 s-1, respectively [pH 7.0, I = 0.1 M (phosphate)]. The agreement of these rate constants with those calculated on the basis of relative Marcus theory is discussed. Stellacyanin is more effective than laccase in quenching benzosemiquinone, suggesting that the physiological role of this metalloprotein is to regulate the concentration of free radicals generated through the laccase-catalyzed oxidation of phenols.  相似文献   

18.
The distribution of iodine among the polypeptides of human goiter thyroglobulin (Tg) was examined. Tg was iodinated in vitro with 131I to levels of 2 to 84 gram atoms (g.a.)/mol using thyroid peroxidase (TPO) or a chemical iodination system. The samples were reduced, alkylated, and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two low-molecular-weight peptides appeared preferentially in radioautograms of the sodium dodecyl sulfate (SDS) gels of TPO-iodinated samples. Iodination of these peptides increased sharply in the TPO-treated Tg as the level of total iodine/ molecule rose. Radioiodine was incorporated into these same gel regions in the chemically treated Tg, but only after much higher levels of total iodination were reached. Differences in iodoamino acid distribution were also noted between the chemically and enzymatically iodinated thyroglobulins. In the chemically iodinated samples, little thyroxine (T4) was synthesized, even at high iodine levels. In the TPO-treated samples only small amounts of T4 were seen below 14 g.a. total I/mol, while at or above that level of iodination T4 formation increased sharply. To examine the coupling process, Tg was chemically iodinated, excess I? removed, and the samples treated with TPO and a H2O2-generating system in the absence of iodide. Radioautograms obtained from SDS-polyacrylamide gels of reduced and alkylated protein from such coupling assays showed an increase in the level of iodine in the low-molecular-weight peptides after TPO treatment. Thyroxine production also increased with TPO treatment. The addition of free DIT (a known coupling enhancer) to the [131I]Tg/TPO incubation increased both the production of T4 and the amount of iodine in the smaller polypeptides. Two-dimensional maps prepared from CNBr-digested TG showed differences between the coupled and uncoupled samples. Our observations confirm the importance of the lowmolecular-weight peptides derived from Tg in thyroid hormone synthesis. At total iodine levels above 14 g.a./mol Tg in enzymatically treated samples there is selective incorporation of iodine into both the low-molecular-weight polypeptides and into thyroid hormone.  相似文献   

19.
Thyroid peroxidase (TPO), the major enzyme in the thyroid hormone synthesis, multifunctionally catalyzes (1) iodide oxidation, (2) iodination of the precursor protein, and (3) a coupling reaction of iodotyrosyl residues. The present study was carried out to examine the mercurial effects on the iodination, the second step of TPO. Purified porcine thyroglobulin or bovine serum albumin as acceptor protein was iodinated with [125I]NaI and H2O2 by purified porcine TPO. Iodinated protein was separated by acid precipitation on membrane filter or paper chromatography. Both CH3HgCl and HgCl2 dose-dependently inhibited the iodination, but HgCl2 was more potent to inhibit the iodination than CH3HgCl. These mercurial effects on the second step resemble the effects on the third step which were already reported; but are in marked contrast to the effects on the first step, where TPO was inhibited by HgCl2 but never by CH3HgCl.  相似文献   

20.
A recent paper (Buchberger, W., 1988, J. Chromatogr. 432, 57) on lactoperoxidase-catalyzed bromination of tyrosine and thyroglobulin stated, without evidence, that thyroid peroxidase (TPO) is able to use bromide as a substrate. This was in disagreement with unpublished experiments previously performed in this laboratory, and we undertook, therefore, to examine this subject further. Highly purified porcine TPO was compared with lactoperoxidase (LPO) and chloroperoxidase (CPO) for ability to catalyze bromination of tyrosine, thyroglobulin, and bovine serum albumin (BSA). The incubation mixture contained 50-100 nM peroxidase, 10-500 microM 82Br-, tyrosine (150 microM), thyroglobulin (0.3 or 1 microM), or BSA (7.5 microM), and a source of H2O2. The latter was either generated by glucose (1 mg/ml)-glucose oxidase (0.5 or 1 micrograms/ml), or added initially as a bolus (100 microM). With TPO, formation of organically bound 82Br was undetectable under all conditions in the pH range 5.4-7.0. Lactoperoxidase and CPO, on the other hand, displayed considerable brominating activity. Lactoperoxidase was much more active at pH 5.4 than at pH 7.0 and was more active with BSA as acceptor than with tyrosine or thyroglobulin. The distribution of 82Br among the various amino acids in LPO-brominated thyroglobulin and BSA was determined by HPLC. As expected, monobromotyrosine and dibromotyrosine together comprised the greatest part of the bound 82Br. However, a surprisingly high percentage (20-25%) was present as monobromohistidine. Evidence was also obtained for the presence of a small percentage of the bound 82Br as tetrabromothyronine. Peroxidase-catalyzed bromination probably depends on the oxidation of Br- to Br+ by the Compound I form of the enzyme. Since oxidation of Br- to Br+ requires a stronger oxidant than oxidation of I- to I+, our results suggest that Compound I of LPO and of CPO has a higher oxidation potential than Compound I of TPO. In vivo experiments with rats on a low iodine diet injected with 82Br- showed that even under conditions of high stimulation by thyrotropic hormone, there is negligible formation of organic bromine in the thyroid. Measurements of thyroid:serum concentration ratios for 82Br- in similar rats provided no evidence that Br- is a substrate for the iodide transport system of the thyroid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号