首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LYNDON  R. F. 《Annals of botany》1982,49(3):281-290
In the apical dome of the pea shoot apex the axis of growthof the epidermal cells becomes predominantly longitudinal inthe I1 region one plastochron before a leaf is initiated, andthis orientation persists into the young primordium. In contrast,in the underlying, non-epidermal cells the growth axis in theI1 region becomes randomized half a plastochron before leafinitiation, but in the young primordium it becomes the sameas in the epidermis. The initiation of a leaf primordium thereforetakes place without any major change in the orientation of growthaxes in the epidermis. A controlling role for the epidermisis therefore suggested. No marked reorientation of the growthaxis occurs on the sides of the newly initiated primordium.The shape of the young primordium can be related to the differentialrates of growth and division within it rather than to changesin growth orientation. Pisum sativum, pea, shoot apex, meristem, growth, epidermis, polarity  相似文献   

2.
LYNDON  R. F. 《Annals of botany》1968,32(2):371-390
The length of the ninth plastochron in shoot apices of Pisumsativum was measured and found to be almost 46 h. This singleplastochron was divided into 11 morphologically recognizablestages and the time taken to reach each stage was measured.The cell number and cell volume of five regions of the apexwas measured at each stage of the plastochron. Although theapex as a whole grew exponentially, growth during the first30 h of the plastochron was predominantly in the primordiumand the adjacent tissues, whereas in the last 16 h growth wasmainly in the apical dome. Since the mean cell volume remainedconstant, different rates of growth were due to different ratesof cell division. The data suggested that the apex probablygrows by the formation of growth centres on alternate sidesof the apex, the beginning of each new growth centre being apparentas an increased rate of growth in the apical dome 16 h beforethe beginning of the next plastochron. The inception of a newprimordium may therefore precede its appearance as a bump byabout 16 h, and precede the first periclinal division in thetunica by 26 h. A central zone of larger cells with lightly-stainingnuclei was found at the extreme apex. This central zone becamereduced in size or disappeared at the time at which a new primordiumwas about to become visible.  相似文献   

3.
Periclinal cell divisions in vegetative shoot apices of Pisumand Silene were recorded from serial thin sections by mappingall the periclinal cell walls formed less than one cell cyclepreviously. The distribution of periclinal divisions in theapical domes corresponded to the distributions subsequentlyoccurring in the apices when the young leaf primordia were forming.In Pisum, periclinal divisions were almost entirely absent fromthe I1 region of the apical dome for half a plastochron justafter the formation of a leaf primordium and appeared, simultaneouslyover the whole of the next potential leaf site, about half aplastochron before the primordium formed. In Silene periclinaldivisions seemed to always present in the apical dome at thepotential leaf sites and also round the sides of the dome wherethe ensheathing leaf bases were to form. Periclinal divisionstherefore anticipated the formation of leaf primordia by occuring,in Pisum about one cell cycle and in Silene two or more cellcycles, before the change in the direction of growth or deformationof the surface associated with primordial initiation. Pisum, Silene, planes of cell division, orientation of cell walls, leaf primordia, shoot apical meristem, plastochron  相似文献   

4.
Growth and development of the shoot apex in seedlings of threebarley cultivars was examined in two daylengths (8, 16 h) andat two mineral nutrient levels (x 1, x 0.1). Production of primordiawas greater at the higher nutrient level and in the longer days.The rate of production varied with cultivar but in all casesthe plastochron shortened with transition to spike formation.Early flowering (cv. Clipper) was associated with a high rateof primordial production and early transition to spike formation,late flowering (cv. Proctor) with a low rate of production anda longer vegetative phase. The cultivar Akka showed intermediatecharacteristics. The volume of the apical dome increased linearlywith increasing numbers of primordia, the rate of increase varyingwith cultivar and treatment. Enlargement of the dome was duemainly to increase in cell number. The transition of the apexto produce spikelet primordia occurred with widely differingvolumes of the apical dome, thus invalidating the hypothesisthat transition is dependent upon attainment of a critical domesize. Although both the rate of production of primordia andenlargement of the dome were markedly affected by photoperiod,both were unaffected when the photoperiodic treatment was givendirectly to the shoot apex. It is considered that the fate of a primordium once initiatedis determined by competition for available metabolites betweenit, other primordia and the apical dome. Hordeum vulgare L, barley, apical dome, primordia, plastochron, cell division  相似文献   

5.
Rates of Cell Division in the Shoot Apical Meristem of Pisum   总被引:3,自引:0,他引:3  
LYNDON  R. F. 《Annals of botany》1970,34(1):1-17
The relative rates of cell division in different regions ofthe pea shoot apical meristem were obtained by measuring theincrease in the numbers of metaphases following applicationof colchicine to the plants. Absolute values for the rates ofcell division could be calculated since the average rate ofcell division for the whole apex was known. Measurements ofthe rates of cell division were obtained at defined intervalsduring the course of a single plastochron. Within each regionof the apex the rate of cell division did not change more thanabout two-fold throughout the plastochron. There was very littleor no increase in the rate of cell division associated withleaf initiation. The formation of a leaf primordium and thesubsequent growth of the apical dome apparently result fromchanges in the direction of growth rather than changes in therates of growth. Three main regions were discernible withinthe apical meristem: a region with a slow rate of cell divisionin the apical dome, a region of a faster rate of cell divisionat the base of the apical dome and at the site of initiationof procambial strands, and a region of an intermediate rateof cell division in the newly initiated leaf primordium andthe adjacent part of the shoot axis.  相似文献   

6.
Two kinds of size change occur in the apical dome of Agropyronrepens during development of the shoot. A cyclic increase anddecrease in size results from the production of a new stem segmentand associated leaf primordium during each plastochron. A progressiveincrease and then decrease in size, which occur over a periodof several plastochrons, is attributable to discrepancies betweenthe size increment during each plastochron and the size of thestem segment formed at the end of the plastochron. The volumedoubling time of the dome remains constant at approximatelyone plastochron. Fluctuations in mean cell generation time correlatewith changes in mean cell volume and do not contribute to thesize changes of the dome. Agropyron repens (L.), Beauv, couch grass, shoot apex, cell growth, cell divisions  相似文献   

7.
Planes of Cell Division and Growth in the Shoot Apex of Pisum   总被引:2,自引:0,他引:2  
LYNDON  R. F. 《Annals of botany》1970,34(1):19-28
The planes of cell division and growth were examined in thecourse of a single plastochron in the shoot apical meristemby observing the orientations of mitotic spindles. In the I1region of the apical dome, cell divisions were at first anticlinalbut 30 h before a leaf primordium emerged at this site 20 percent of the cell divisions became periclinal. These periclinaldivisions were found only in the corpus. Periclinal divisionsin the tunica were coincident with the appearance of the primordiumas a bulge. The change in the direction of growth in I1 at thesite of the incipient leaf primordium occurred without any changein the rate of growth in this region of the meristem.  相似文献   

8.
Distribution of Growth in the Apical Region of the Shoot of Lupinus albus   总被引:1,自引:0,他引:1  
The purpose of the investigation is the determination of thevolumes and numbers of cells of the meristematic dome and ofeach of the first 7 primordia and internodes at the apex ofthe shoot of Lupinui albus. This system occupies a zone whichis about 0·4 mm. in length. Techniques are describedfor dissecting the region in which the observations are made,for determining the numbers of cells and the volumes of theseveral fragments. From the number of cells and the volume ofeach fragment an average cell volume it calculated. It is shown that in the midphase of the plastochron the domecontains 3,500 cells and has a volume of 1·6 x10–3mm.3,the first primordium contains 1,630 cells and has a volume of0·38 x10–3 mm.3, and the first intemode containsabout 700 cells and has a volume of about 1·4 x10–3mm3The number of cells and the volume of the primordium increaseexponentially with increasing plastochron age, and the seventhprimordium contains 26,000 cells and has a volume of 20·9x 10–3mm3 The seventh intemode contains about 5,000 cellsand has a volume of 8·6x10–3mm3 The average cell volume in the dome is 4·7 x 10–7mm.3in the first primorndium it is 2·3 x 10–7mm.3 andin the first internode it is 20·9x 10–7mm.3 Inthe seventh primordium the average cell volume increases to7·9 x 10–7mm.3 In the internodes there is little,if. any, change in cell volume from the first to the seventhof the series. The significance of these changes is discussed.  相似文献   

9.
Explants from the shoot apex of the tomato, comprising the apicaldome and youngest primordium together with small amounts ofsub-apical tissue were cultured for periods of 1 to 4 plastochrons.By the use of a simple parameter, the axillary distance, thegrowth-rate could be accurately monitored throughout each plastochron. Gibberellic acid, coconut milk, and kinetin, in addition tosucrose and inorganic salts, all promoted growth of the apex;a combination of gibberellic acid and coconut milk gave thefastest growth. Temperature had a large effect on the growth-ratewith an in vitro Q10 of 2.1 contrasted with an in vivo Q10 of1.2 over the range of 15 to 25 ?C. On gibberellic acid and coconutmilk at 15 ?C two-thirds of the in vivo growth--rate was sustainedin culture for two plastochrons after which the growth-rategradually declined; at 20 and 25 ?C growth-rates slightly higherthan in vivo rates were sustained for 1 plastochron before amore rapid decline. The anatomy of these in vitro apices wasnormal for 1? plastochrons after which there were small increasesin cell volume in the developing primordium. Reducing the amount of sub-apical tissue drastically reducedthe growth rate but had little effect on the responses to gibberellicacid and coconut milk. Explants are considered to be useful material for studying thechanges that take place in the apex during the course of 1 or2 plastochrons, but inadequate on the media tested for experimentsinvolving longer periods of growth. Explants also provide asensitive assay system for the effects of growth factors onthe rate of shoot apical growth.  相似文献   

10.
Lateral root primordium development has been examined in primaryroots of Vicia faba L., Pisum sativum L., Zea mays L. and Phaseolusvulgaris L. Following their initiation from an estimated minimumnumber of 77–162, 20–57, 17 and 12 cells respectivelyin Vicia, Phaseolus, Pisum and Zea, the primordia rapidly increasedin cell number to emerge as secondary roots about 2.8–3.6days later depending on the species being examined. Cell doublingtimes were estimated directly from cell numbers at differenttimes following primordium inception and were found to increasewith increase in primordium size in each of the species investigated. The number of primordia formed per cm of root growth per daywas greatest in Zea and least in Pisum. A comparison of thedata obtained for Vicia with that in the literature led to theconclusion that although the number of primordia produced percm of root growth was independent of the rate of primary elongation,the number produced per day increased in a linear fashion withincrease in the rate at which the primary lengthened. Vicia faba L, Pisum sativum L, Zea mays L, Phaseolus vulgaris L, broad bean, garden pea, maize, dwarf bean, root primordia, cell division, cell doubling time  相似文献   

11.
By following the movement of carbon particle markers on theexposed surface of a cultured tomato apex it has been shownthat a leaf primordium is formed by growth on the flank of theapex raising the tissue upwards and outwards to form the leafbuttress. The whole of the apical surface is in an active stateof cell division and expansion except in the axillary regionabove the primordium. The data provide direct estimates of therates of division in the outer layer of cells. The distribution of blocked metaphase figures following treatmentwith colchicine, shows that in the early stages of primordiumformation cell divisions are concentrated in what appears tobo a ‘growth centre’ in the corpus to one side ofthe apical dome. As the bulge of the primordium develops, thegrowth centre spreads out and splits into two parts continuingthe growth of the dome (proximal side) and the primordium (distalside). Between these two regions of active division there arisesa small pocket of cells in the axil, whose rate of divisionrapidly declines. Cuts made in the apical surface in the early stages of primordiumformation immediately gape widely, apparently as a result ofpressure exerted on the outer layers from within by divisionsin the corpus. Once the upper surface of the primordium becomesraised above the dome, the axillary cells seem to become compressedbetween the two zones of active division. In the axil at thisstage (a) cuts do not gape but close up after exuding cell sapand (b) the carbon particle markers move slightly together.  相似文献   

12.
Precise knowledge of spatial and temporal patterns of cell division, including number and orientation of divisions, and knowledge of cell expansion, is central to understanding morphogenesis. Our current knowledge of cell division patterns during plant and animal morphogenesis is largely deduced from analysis of clonal shapes and sizes. But such an analysis can reveal only the number, not the orientation or exact rate, of cell divisions. In this study, we have analyzed growth in real time by monitoring individual cell divisions in the shoot apical meristems (SAMs) of Arabidopsis thaliana. The live imaging technique has led to the development of a spatial and temporal map of cell division patterns. We have integrated cell behavior over time to visualize growth. Our analysis reveals temporal variation in mitotic activity and the cell division is coordinated across clonally distinct layers of cells. Temporal variation in mitotic activity is not correlated to the estimated plastochron length and diurnal rhythms. Cell division rates vary across the SAM surface. Cells in the peripheral zone (PZ) divide at a faster rate than in the central zone (CZ). Cell division rates in the CZ are relatively heterogeneous when compared with PZ cells. We have analyzed the cell behavior associated with flower primordium development starting from a stage at which the future flower comprises four cells in the L1 epidermal layer. Primordium development is a sequential process linked to distinct cellular behavior. Oriented cell divisions, in primordial progenitors and in cells located proximal to them, are associated with initial primordial outgrowth. The oriented cell divisions are followed by a rapid burst of cell expansion and cell division, which transforms a flower primordium into a three-dimensional flower bud. Distinct lack of cell expansion is seen in a narrow band of cells, which forms the boundary region between developing flower bud and the SAM. We discuss these results in the context of SAM morphogenesis.  相似文献   

13.
Leaf initiation rate, leaf primordium growth rates, and apical volume growth rates were determined for seedlings of Triticum aestivum cv. Ramona 50 under controlled environmental conditions. Three leaf primordia are present in the caryopsis, and three more leaves are initiated within the first two weeks after germination with a mean plastochron length of 95.5 hr. Volume growth rates of the apical region were determined on six apices which had six primordia each. The mean radial expansion rate was 0.467/plastochron, and the vertical expansion rate was 0.457/plastochron. The volume expansion rate was 1.393/plastochron. The mean volume doubling time was 0.498 plastochrons or 47.1 hr.  相似文献   

14.
The growth rate of the stem of Agropyron repens (L.) Beauv.begins to decline when the sixth foliage leaf has expanded butthe relative growth rate declines throughout the period betweenthe production of one and ten mature leaves. On an absolutetime scale there is a progressive decline in growth rate ofsuccessively formed stem (node-internode) units. On a plastochronscale the relative growth rate of successive stem units declineswithin the apical region but increases behind the apex. Thedecline in the apical region is related to a decrease in therate of cell division and in the later formed stem units thereis no significant increase in cell number from the time of theirformation by the apex until the internode is initiated duringtheir fourth plastochron. These changes are related to concurrentchanges in the size of the shoot apex and in rates of leaf growth.  相似文献   

15.
Epidermal Cell Division and the Coordination of Leaf and Tiller Development   总被引:7,自引:2,他引:5  
Initiation and development of grass leaves and tillers are oftendescribed individually with little attention to possible interrelationshipsamong organs. In order to better understand these interrelationships,this research examined epidermal cell division during developmentaltransitions at the apical meristem of tall fescue (Festuca arundinaceaSchreb.). Ten seedlings were harvested each day for a 9-d period,and lengths of main shoot leaves and primary tillers were measured.In addition, numbers and lengths of epidermal cells were determinedfor 0·5 mm segments along the basal 3 mm of each leafand tiller. Primordia development and onset of rapid leaf elongationwere characterized by an increase in the number of cells perepidermal file with mean cell length remaining near 20 µmper cell. After the leaf had lengthened to 1-1·5 mm,cells near the leaf tip ceased dividing and increased in length,at which time leaf elongation rate increased rapidly. Liguleformation, marking the boundary between blade and sheath cells,occurred prior to leaf tip emergence above the whorl of oldersheaths, while the earliest differentiation between blade andsheath cells probably began when leaves were < 1 mm long.Major transitions in leaf and tiller development appeared tobe synchronized among at least three adjacent nodes. At theoldest node, cessation of cell division in the leaf sheath wasaccompanied by initiation of cell division and elongation inthe associated tiller bud. At the next younger node the ligulewas being initiated, while at the youngest node cell divisioncommenced in the leaf primordium, as elongation of a new leafblade began. This synchronization of events suggests a key rolefor the cell division process in regulating leaf and tillerdevelopment.Copyright 1994, 1999 Academic Press Festuca arundinacea Schreb., tall fescue, cell division, leaf initiation, tillering, ligule development  相似文献   

16.
Effects of temperature on the subsequent development in continuouslight of floral buds formed after a single short-day cycle inLemna perpusilla 6746, a short-day plant, were studied usingfronds selected in relation to the order of emergence. The floralbuds developed to stage 1 regardless of the temperature duringthe following CL. The rate of development, however, was slowerat lower temperature. The minimum number of days in CL neededfor the abortion of once formed floral buds increased with adecrease in temperature, accompanied by an increase in the frondplastochron. Furthermore, when the frond plastochron was alteredby manipulation of the environmental conditions, i.e., lightintensity or medium strength, the minimum number of days inCL required for the abortion of the floral buds also changed.These results suggest that the development pattern of floralbuds in this plant is highly correlated with the frond plastochron. (Received September 20, 1977; )  相似文献   

17.
High soil resistance to root penetration (measured as penetrometerresistance, Rs slows down leaf growth and reduces mature leafsize in wheat seedlings {Triticum aestivum L.). Underlying changesin the kinetics of cell partitioning and expansion and in thesize and organization of mature cells were reported in companionpapers (Beemster and Masle, 1996; Beemster et al., 1996). Inthe present study, the relationships between apex growth, primordiuminitiation and expansion were analysed for plants grown at contrastingRs, focusing on a leaf whose whole development proceeded afterthe onset of root impedance (leaf 5). High Rs reduced the rates of apex and leaf development, butdid not appear to have immediate effects on the pattern of developmentof the newly initiated phytomers. During an initial short period,the rate of development of a leaf primordium and associatednode were related to plastochronic age, according to similarrelationships (slopes) at the two Rs. Effects on developmentalpatterns were first detected on phytomer radial expansion duringplastochron 2. The ontogenetic pattern of leaf elongation wasaffected later, during the next few plastochrons preceding leafemergence (‘post-primordial stage’). It is concludedthat a reduction in the number of formative divisions and inthe number of proliferative cells along the intercalary mer-istemreported earlier (Beemster and Masle, 1996; Beemster et al.,1996) is not related to the size of the apical dome at leafinitiation nor to the size and number of meristematic cellsinitially recruited to the leaf primordium, which were all unaffectedby Rs. Rather they are generated at the primordial and post-primordialstages. Key words: Wheat, apex development, leaf primodium development, mature leaf width, root impedance  相似文献   

18.
piwi represents the first class of genes known to be required for stem cell self-renewal in diverse organisms. In the Drosophila ovary, piwi is required in somatic signaling cells to maintain germline stem cells. Here we show that piwi encodes a novel nucleoplasmic protein present in both somatic and germline cells, with the highly conserved C-terminal region essential for its function. Removing PIWI protein from single germline stem cells significantly decreases the rate of their division. This suggests that PIWI has a second role as a cell-autonomous promoter of germline stem cell division. Consistent with its dual function, over-expression of piwi in somatic cells causes an increase both in the number of germline stem cells and the rate of their division. Thus, PIWI is a key regulator of stem cell division - its somatic expression modulates the number of germline stem cells and the rate of their division, while its germline expression also contributes to promoting stem cell division in a cell-autonomous manner.  相似文献   

19.
Linum usitatissimum stem growth parameters were quantified by computer-assisted analyses of scanning electron micrographs of shoot apical meristems throughout ontogeny. There were progressive decreases in the plastochron and relative plastochron rates of radial and vertical stem growth which resulted in the generation of progressively higher orders of contact parastichy phyllotaxis throughout ontogeny. The change in the relative spacing of primordia initiation on the stem coupled with the iterative differentiation of leaf gap and interfascicular ray parenchyma associated with each leaf primordium resulted in the delimitation of progressively higher orders of leaf trace interconnections throughout ontogeny. A set of developmental rules was generated which should permit simulation of many leaf trace patterns.  相似文献   

20.
The ontogeny of Epilobium hirsutum grown under natural summer photoperiod in a glasshouse was divided into vegetative, early transitional, transitional, and floral stages. Bijugate phyllotaxy, common to both the vegetative and early transitional stages, is transformed into spiral phyllotaxy during the transitional stage by an initial change in the divergence angle of a single primordium inserted at a unique level on the shoot. Leaf primordia subsequently are inserted in a spiral arrangement in the indeterminate floral shoot apex. The early transitional shoot apical meristem is about 1.5 times the volume of the vegetative meristem but expands at about two-thirds the relative plastochron rate of volume increment of the vegetative meristem. There are progressive decreases in the plastochron and relative plastochron rates of radial and vertical shoot growth through ontogeny. Relative chronological rates of shoot growth, however, are not altered during ontogeny. Spiral transformation results from changes in the relative points of insertion of leaf primordia on the shoot meristem. These changes are accompanied by an increased rate of primordia initiation on a more circular shoot meristem. The change in phyllotaxy during ontogeny is similar to that which was artificially induced by chemical modification of auxin concentration gradients in the shoot apex, with the additional feature that there is an initial increase in the volume of the shoot meristem prior to the natural spiral transformation. Size of the shoot apical meristem, however, appears to have little influence on Epilobium phyllotaxy; but the geometric shape of the meristem is well correlated with bijugate to spiral transformations. This suggests that geometric parameters of the shoot meristem should be considered in theoretical models of phyllotaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号