首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperimmune response via Fas/Fas-ligand and perforin/granzyme pathways may be essential in pathogenesis of virus-induced fulminant hepatitis. CrmA inhibits activation of caspases and granzyme B, suggesting it may block these pathways. We investigated whether CrmA expression would inhibit Fas-associated lethal hepatitis in mice. We successfully generated AxCALNLCrmA, a recombinant adenovirus expressing CrmA gene with a Cre-mediated switching cassette. We increased CrmA expression level in the liver transfected with AxCALNLCrmA (10(9) pfu) by increasing administration dose (10(7)-10(9) pfu) of AxCANCre, a recombinant, adenovirus-expressing Cre gene. Injection of anti-Fas antibody into the control mice rapidly led to animal death due to massive liver apoptosis, while the apoptosis was dramatically reduced in the CrmA-expressed mice. The animal survival increased with an increase of CrmA expression. The formation of active caspase-3 was markedly inhibited in the crmA-transfected hepatocytes in vitro. These results suggest that crmA is an effective gene that can inhibit immune-related liver apoptosis.  相似文献   

2.
Persistent hepatitis C virus (HCV) infection often progresses to chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Numerous viruses have been reported to escape from apoptotic mechanism to maintain persistent infection. In the present study, we characterized the effect of HCV proteins on the Fas signal using HCV transgenic mice, which expressed core, E1, E2, and NS2 proteins, regulated by the Cre/loxP switching system. The transgene expression of HCV transgenic mice caused resistance to Fas antibody stimulated lethality. Apoptotic cell death in the liver of HCV protein expressing mice was significantly reduced compared with nonexpressing mice. Histopathological analysis and DNA fragmentation analysis revealed that the HCV proteins suppressed Fas-mediated apoptotic cell death. To identify the target pathway of HCV proteins, we characterized caspase activity. The activation of caspase-9 and -3/7 but not caspase-8 was inhibited by HCV proteins. Cytochrome c release from mitochondria was inhibited in HCV protein expressing mice. These results indicated that the expression of HCV proteins may directly or indirectly inhibit Fas-mediated apoptosis and death in mice by repressing the release of cytochrome c from mitochondria, thereby suppressing caspase-9 and -3/7 activation. These results suggest that HCV may cause persistent infection, as a result of suppression of Fas-mediated cell death.  相似文献   

3.
BACKGROUND: The Sleeping Beauty (SB) transposon system is a non-viral vector system that can integrate precise sequences into chromosomes. We evaluated the SB transposon system as a tool for gene therapy of mucopolysaccharidosis (MPS) types I and VII. METHODS: We constructed SB transposon plasmids for high-level expression of human beta-glucuronidase (hGUSB) or alpha-L-iduronidase (hIDUA). Plasmids were delivered with and without SB transposase to mouse liver by rapid, high-volume tail-vein injection. We studied the duration of expressed therapeutic enzyme activity, transgene presence by PCR, lysosomal pathology by toluidine blue staining and cell-mediated immune response histologically and by immunohistochemical staining. RESULTS: Transgene frequency, distribution of transgene and enzyme expression in liver and the level of transgenic enzyme required for amelioration of lysosomal pathology were estimated in MPS I and VII mice. Without immunomodulation, initial GUSB and IDUA activities in plasma reached > 100-fold of wild-type (WT) levels but fell to background within 4 weeks post-injection. In immunomodulated transposon-treated MPS I mice plasma IDUA persisted for over 3 months at up to 100-fold WT activity in one-third of MPS I mice, which was sufficient to reverse lysosomal pathology in the liver and, partially, in distant organs. Histological and immunohistochemical examination of liver sections in IDUA transposon-treated WT mice revealed inflammation 10 days post-injection consisting predominantly of mononuclear cells, some of which were CD4- or CD8-positive. CONCLUSIONS: Our results demonstrate the feasibility of achieving prolonged expression of lysosomal enzymes in the liver and reversing MPS disease in adult mice with a single dose of therapeutic SB transposons.  相似文献   

4.
Mucopolysaccharidosis (MPS) type VII patients lack functional beta-glucuronidase, leading to systemic and central nervous system dysfunction. In this study we tested whether recombinant adenovirus that encodes beta-glucuronidase (Adbetagluc), delivered intravenously and into the brain parenchyma of MPS type VII mice, could provide long-term transgene expression and correction of lysosomal distension. We also tested whether systemic treatment with the immunosuppressive anti-CD40 ligand antibody, MR-1, affected transgene expression. We found substantial plasma beta-glucuronidase activity for over 9 weeks after gene transfer in the MR-1- treated group, with subsequent decline in activity corresponding to a delayed anti-beta-glucuronidase antibody response. At 16 weeks, near wild-type amounts of beta-glucuronidase activity and striking reduction of lysosomal pathology were detected in livers from mice that had received either MR-1 cotreatment or control antibody. In the lung and kidney, beta-glucuronidase activity was markedly higher for the MR-1-treated group. beta-Glucuronidase activity in the brain persisted independently of MR-1 treatment. Activity was intense in the injected hemisphere and was also evident in the noninjected cortex and striatum, with dramatic improvements in storage deposits in areas of both hemispheres. These results indicate that prolonged enzyme expression from transgenes delivered to deficient liver and brain can mediate pervasive correction and illustrate the potential for gene therapy of MPS and other lysosomal storage diseases.  相似文献   

5.
Zhang HG  Xie J  Xu L  Yang P  Xu X  Sun S  Wang Y  Curiel DT  Hsu HC  Mountz JD 《Journal of virology》2002,76(11):5692-5700
A major limitation of adenovirus (Ad) gene therapy product expression in the liver is subsequent elimination of the hepatocytes expressing the gene therapy product. This elimination is caused by both necrosis and apoptosis related to the innate and cell-mediated immune response to the Ad. Apoptosis of hepatocytes can be induced by the innate immune response by signaling through death domain receptors on hepatocytes including the tumor necrosis factor alpha (TNF-alpha) receptor (TNFR), Fas, and death domain receptors DR4 and DR5. We have previously shown that blocking signaling through TNFR enhances and prolongs gene therapy product expression in the liver. In the present study, we constructed an Ad that produces a soluble DR5-Fc (AdsDR5), which is capable of neutralizing TNF-related apoptosis-inducing ligand (TRAIL). AdsDR5 prevents TRAIL-mediated apoptosis of CD3-activated T cells and decreases hepatocyte apoptosis after AdCMVLacZ administration and enhances the level and duration of lacZ transgene expression in the liver. In addition to blocking TRAIL and directly inhibiting apoptosis, AdsDR5 decreases production of gamma interferon (IFN-gamma) and TNF-alpha and decreases NK cell activation, all of which limit Ad-mediated transgene expression in the liver. These results indicate that (i) AdsDR5 produces a DR5-Fc capable of neutralizing TRAIL, (ii) AdsDR5 can reduce activation of NK cells and reduce induction of IFN-gamma and TNF-alpha after Ad administration, and (iii) administration of AdsDR5 can enhance Ad gene therapy in the liver.  相似文献   

6.
The X protein from a chronic strain of hepatitis B virus (HBx) was determined to inhibit Fas-mediated apoptosis and promote cell survival. Fas-mediated apoptosis is the major cause of hepatocyte damage during liver disease. Experiments demonstrated that cell death caused by anti-Fas antibodies was blocked by the expression of HBx in human primary hepatocytes and mouse embryo fibroblasts. This effect was also observed in mouse erythroleukemia cells that lacked p53, indicating that protection against Fas-mediated apoptosis was independent of p53. Components of the signal transduction pathways involved in this protection were studied. The SAPK/JNK pathway has previously been suggested to be a survival pathway for some cells undergoing Fas-mediated apoptosis, and kinase assays showed that SAPK activity was highly up-regulated in cells expressing the HBx protein. Normal mouse fibroblasts expressing HBx were protected from death, whereas identical fibroblasts lacking the SEK1 component from the SAPK pathway succumbed to Fas-mediated apoptosis, whether HBx was present or not. Assays showed that caspase 3 and 8 activities and the release of cytochrome c from mitochondria were inhibited, in the presence of HBx, following stimulation with anti-Fas antibodies. Coprecipitation and confocal immunofluorescence microscopy experiments demonstrated that HBx localizes with a cytoplasmic complex containing MEKK1, SEK1, SAPK, and 14-3-3 proteins. Finally, mutational analysis of HBx demonstrated that a potential binding region for 14-3-3 proteins was essential for induction of SAPK/JNK activity and protection from Fas-mediated apoptosis.  相似文献   

7.
RNA interference targeting Fas protects mice from fulminant hepatitis   总被引:188,自引:0,他引:188  
  相似文献   

8.
The persistence of transgene expression has become a hallmark for adenovirus vector evaluation in vivo. Although not all therapeutic benefit in gene therapy is reliant on long-term transgene expression, it is assumed that the treatment of chronic diseases will require significant persistence of expression. To understand the mechanisms involved in transgene persistence, a number of adenovirus vectors were evaluated in vivo in different strains of mice. Interestingly, the rate of vector genome clearance was not altered by the complete deletion of early region 4 (E4) in our vectors. The GV11 (E1- E4-) vector genome cleared with a similar kinetic profile as the GV10 (E1-) vector genome in immunocompetent and immunocompromised mice. These results suggest that the majority of adenovirus vector genomes are eliminated from transduced tissue via a mechanism(s) independent of T-cell, B-cell, and NK cell immune mechanisms. While the levels of persistence of transgene expression in liver or lung transduced with GV10 and GV11 vectors expressing beta-galactosidase, cystic fibrosis transmembrane conductance regulator, or secretory alkaline phosphatase were similar in immunocompetent mice, a marked difference was observed in immunocompromised animals. Levels of transgene expression initially from both GV10 and GV11 vectors were the same. However, GV11 transgene expression correlated with loss of vector genome, while GV10 transgene expression persisted at a high level. Coadministration and readministration of GV10 vectors showed that E4 provided in trans could activate transgene expression from the GV11 vector genome. While transgene expression activity per genome from the GV10 vector is clearly activated, expression from a cytomegalovirus promoter expression cassette in a GV11 vector appeared to be further inactivated as a function of time. Understanding the molecular mechanisms underlying these expression effects will be important for developing persistent adenovirus vectors for chronic applications.  相似文献   

9.
Tumor necrosis factor-alpha receptor 1 and Fas recruit overlapping signaling pathways. To clarify the differences between tumor necrosis factor alpha (TNFalpha) and Fas pathways in hepatocyte apoptosis, primary mouse hepatocytes were treated with TNFalpha or an agonist anti-Fas antibody after infection with an adenovirus expressing an IkappaB superrepressor (Ad5IkappaB). Treatment with TNFalpha induced apoptosis in Ad5IkappaB-infected mouse hepatocytes, as we previously reported for rat hepatocytes. Ad5IkappaB plus anti-Fas antibody or actinomycin D plus anti-Fas antibody rapidly induced apoptosis, whereas anti-Fas antibody alone produced little cytotoxicity. The proteasome inhibitor (MG-132) and a dominant-negative mutant of nuclear factor-kappaB-inducing kinase also promoted TNFalpha- and Fas-mediated apoptosis. Expression of either crmA or a dominant-negative mutant of the Fas-associated death domain protein prevented TNFalpha- and Fas-mediated apoptosis. In addition, the caspase inhibitors, DEVD-cho and IETD-fmk, inhibited TNFalpha- and Fas-mediated apoptosis. In Ad5IkappaB-infected hepatocytes, caspases-3 and -8 were activated within 2 h after treatment with anti-Fas antibody or within 6 h after TNFalpha treatment. Confocal microscopy demonstrated onset of the mitochondrial permeability transition (MPT) and mitochondrial depolarization by 2-3 h after anti-Fas antibody treatment and 8-10 h after TNFalpha treatment, followed by cytochrome c release. The combination of the MPT inhibitors, cyclosporin A, and trifluoperazine, protected Ad5IkappaB-infected hepatocytes from TNFalpha-mediated apoptosis. After anti-Fas antibody, cyclosporin A and trifluoperazine decreased cytochrome c release but did not prevent caspase-3 activation and cell-death. In conclusion, nuclear factor-kappaB activation protects mouse hepatocytes against both TNFalpha- and Fas-mediated apoptosis. TNFalpha and Fas recruit similar but nonidentical, pathways signaling apoptosis. The MPT is obligatory for TNFalpha-induced apoptosis. In Fas-mediated apoptosis, the MPT accelerates the apoptogenic events but is not obligatory for them.  相似文献   

10.
11.
Hepatocyte growth/scatter factor (HGF/SF) is a pleiotropic cytokine originally identified as a potent mitogen for rat hepatocytes. Two HGF/SF knockout mouse models have been reported, both of which exhibit developmental abnormalities causing embryonic lethality. To circumvent this limitation, we created a mouse conditionally deficient in liver expression of HGF/SF to specifically investigate the role of this mitogen in the process of adult liver regeneration. Gene targeting technology was used to generate a mouse with loxP sites flanking exon 5 of the HGF/SF gene (ex5-flox). In the absence of cre recombinase activity, mice homozygous for ex5-flox were indistinguishable from wild-type littermates. To ablate HGF/SF gene expression in vitro, primary hepatocytes established from homozygous HGF(ex5-flox) mice were infected with a recombinant adenoviral vector coding for cre recombinase (AdCre1). PCR analyses of genomic DNA demonstrated greater than 90% ablation of the ex5-floxed gene sequence. In vivo, HGF(ex.5-flox) mice were administered AdCre1 vector and the ablation of the HGF gene confirmed by Southern blot analysis. To induce liver regeneration, mice were injected with the hepatotoxin carbon tetrachloride. The regenerative capacity of hepatocytes in mice administered cre recombinase was shown to be significantly reduced when compared with mice injected with an adenovirus expressing LacZ. A similar reduction in hepatocyte regeneration was observed in HGF(ex.5.flox) mice carrying the cre transgene under the control of the interferon-inducible (pI:pC) Mx1 promoter, as an alternative strategy to ablate the HGF/SF gene in liver. Our results confirm the mitogenic role of HGF/SF in liver regeneration.  相似文献   

12.
Construction of an adenovirus type 7a E1A- vector.   总被引:2,自引:0,他引:2       下载免费PDF全文
A strategy for constructing replication-defective adenovirus vectors from non-subgroup C viruses has been successfully demonstrated with adenovirus type 7 strain a (Ad7a) as the prototype. An E1A-deleted Ad7a reporter virus expressing the chloramphenicol acetyltransferase (CAT) gene from the cytomegalovirus promoter enhancer was constructed with DNA fragments isolated from Ad7a, an Ad7a recombination reporter plasmid, and the 293 cell line. The Ad7a-CAT virus particle transduces A549 cells as efficiently as Ad5-based vectors. Intravenous infections in a murine model indicate that the Ad7a-CAT virus infects a variety of tissues, with maximal levels of CAT gene expression found in the liver. The duration of Ad7a-CAT transgene expression in the liver was maximally maintained 2 weeks postinfection, with a decline to baseline activity by the week 4 postinfection. Ad7a-CAT represents the first example of a non-subgroup C E1A- adenovirus gene transfer vector.  相似文献   

13.
14.
The cellular and humoral immune responses to adenovirus (Ad) remain a major barrier to Ad-mediated gene therapy. We recently reported that mice deficient in tumor necrosis factor alpha (TNF-alpha) or Fas (APO-1, CD95) have prolonged expression of an Ad transgene expressing a foreign protein in the liver. To determine whether blockade of TNF-alpha or Fas would have the same effect in normal mice, we created transgenes that expressed soluble murine CD8 or CD8 fused to the extracellular regions of TNF receptor 1 (TNFR) or Fas and inserted into the left-end region of first-generation (E1/E3-) Ad vectors. Consistent with the results observed in TNF-deficient mice, expression of the TNFR-CD8 fusion protein was prolonged in vivo compared to that of control proteins. Not only did expression of TNFR-CD8 persist in the liver and the lung, but when coadministered with another first-generation vector, the protein provided "transprotection" for the companion vector and transgene. In addition, TNFR-CD8 attenuated the humoral immune response to the Ad. Together, these findings demonstrate that blockade of TNF-alpha is likely to be useful in extending the expression of an Ad-encoded transgene in a gene therapy application.  相似文献   

15.
Hepatocytes from cirrhotic murine livers exhibit increased basal ROS activity and resistance to TGFbeta-induced apoptosis, yet when ROS levels are decreased by antioxidant pretreatment, these cells recover susceptibility to apoptotic stimuli. To further study these redox events, hepatocytes from cirrhotic murine livers were pretreated with various antioxidants prior to TGFbeta treatment and the ROS activity, apoptotic response, and mitochondrial ROS generation were assessed. In addition, normal hepatocytes were treated with low-dose H(2)O(2) and ROS and apoptotic responses determined. Treatment of cirrhotic hepatocytes with various antioxidants decreased basal ROS and rendered them susceptible to apoptosis. Examination of normal hepatocytes by confocal microscopy demonstrated colocalization of ROS activity and respiring mitochondria. Basal assessment of cirrhotic hepatocytes showed nonfocal ROS activity that was abolished by antioxidants. After pretreatment with an adenovirus expressing MnSOD, basal cirrhotic hepatocyte ROS were decreased and TGFbeta-induced colocalization of ROS and mitochondrial respiration was present. Treatment of normal hepatocytes with H(2)O(2) resulted in a sustained increase in ROS and resistance to TGFbeta apoptosis that was reversed when these cells were pretreated with an antioxidant. In conclusion, cirrhotic hepatocytes have a nonfocal distribution of ROS. However, normal and cirrhotic hepatocytes exhibit mitochondrial localization of ROS that is necessary for apoptosis.  相似文献   

16.
Quantitative real-time RT-PCR was used to investigate the effects of prototypical drug-metabolizing enzyme inducers rifampicin (Rif), dexamethasone (Dex), and omeprazole (Ome) on mRNA expression levels of the housekeeping genes beta-actin (ACTB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-glucuronidase (GUSB), hypoxanthine phosphoribosyltransferase 1 (HPRT1), peptidylprolylisomerase A (PPIA), TATA box binding protein (TBP), and transferrin receptor (TFRC) in primary cultures of cryopreserved human and rat hepatocytes. The mRNA levels of ACTB, GAPDH, GUSB, PPIA, TBP, and TFRC relative to HPRT1 in human hepatocytes were constant at all concentrations of inducers. However, the mRNA level of GAPDH relative to HPRT1 in rat hepatocytes was markedly increased by Rif. The mRNA levels of GAPDH, GUSB, PPIA, TBP, and TFRC relative to HPRT1 in rat hepatocytes were significantly increased by Dex. ACTB and HPRT1 are suitable internal controls for evaluating mRNA expression levels in primary cultures of human and rat hepatocytes after Rif, Dex, or Ome exposure.  相似文献   

17.
The central role of CD4+ T cells in regulation of adenovirus vector-mediated immune responses has been documented previously in murine models. We analyzed the effects of a nondepleting mAb to human CD4 (CD4 mAb; Clenoliximab) on immune functions following intratracheal administration of adenoviral vectors in murine CD4-deficient mice (muCD4KO) expressing a human CD4 transgene (HuCD4 mice). Treatment of HuCD4 mice with Clenoliximab inhibited both cell-mediated and humoral immune responses to adenoviral Ags. Chronic treatment of HuCD4 mice with Clenoliximab permitted successful readministration of adenoviral vectors at least four times. The ability to readminister these vectors is associated with marked suppression of neutralizing Ab responses to viral capsid proteins. Clenoliximab also inhibited CTL and prolonged expression of the transgene. T or B cell responses to adenovirus did not emerge after the effects of a short course of Clenoliximab diminished. These data illustrate the potential utility of a nondepleting CD4 Ab in facilitating gene therapy using adenoviral vectors.  相似文献   

18.
The elevation of soluble Fas (sFas) in the sera of patients with liver disease suggests a role for sFas in the disease process; whether it is protective or not is controversial. To determine the effects of sFas on Fas-induced liver apoptosis, we manipulated mice to produce sFas by transfecting them in vivo with different amounts of an adenovirus that produces mouse sFas driven by the CMV promoter (AdsFas). Fas-mediated apoptosis was induced by administration of anti-mouse Fas (Jo2; 10 microg/mouse) one week later. The administration of AdsFas (10(3), 10(7), or 10(9) pfu/mouse), which was associated with only minimal side-effects, resulted in a significant reduction in the liver transaminase levels and mortality of the mice on challenge with Jo2, as compared to control mice treated with AdLacZ. However, the protective effect of AdsFas was not complete. The possibility that Jo2-induction of TNF-alpha in the Kupffer cells of the liver contributes to the pathology was therefore tested. Although administration of soluble TNF receptor (sTNFRI) alone did not protect the mice from the lethal effects of Jo2, administration of sTNFRI (200 microg/mouse) after infection with AdsFas (10(9) pfu/mouse) resulted in 100% survival of the mice on challenge with Jo2. To confirm that the production of TNF-alpha by Kupffer cells produce the lethal effects of Jo2 that remained after treatment with AdsFas, these cells were selectively ablated by treatment of the mice with gadolinium chloride prior to challenge with Jo2. This treatment greatly reduced early mortality and hepatocellular damage as well as TNF-alpha production 6 h after injection of Jo2. These results indicate that: (1) AdsFas prevents Jo2-induced apoptosis of hepatocytes; (2) In addition to mediating Fas-mediated apoptosis of hepatocytes, Jo2 can separately induce TNF-alpha production by Kupffer cells resulting in early mortality, and (3) Optimal protection from Jo2-induced mortality can be achieved by protection of liver cells by pretreatment with both AdsFas and sTNFRI.  相似文献   

19.
20.
Recombinant adenovirus-mediated gene therapy has demonstrated great promise for the delivery of genes to the pulmonary epithelium. However, dose-dependent inflammation and local immune responses abbreviate transgene expression. The purpose of these studies was to determine the role of TNF-alpha and individual TNF receptor signaling to adenovirus clearance and immune responses, and whether coexpression of human IL-10 could reduce inflammation and extend the duration of transgene expression in the lung. beta-Galactosidase expression in mice receiving intratracheal instillation of Adv/beta-gal (adenovirus construct expressing beta-galactosidase) was transient (less than 14 days), but a significant early increase of beta-galactosidase expression was seen in mice lacking either or both TNF-alpha receptors. Absence of TNF-alpha or the p55 receptor significantly attenuated the Ab response to both adenovirus and beta-galactosidase. Human IL-10 expression in the lung suppressed local TNF-alpha production following AdV/hIL-10 (adenovirus construct expressing human IL-10) delivery, but did not lead to increased or prolonged transgene expression when coexpressed with beta-galactosidase. Expression of human IL-10 following AdV/hIL-10 instillation extended at least 14 days, was nonimmunogenic, and suppressed the development of neutralizing Abs against adenoviral proteins as well as against human IL-10. We conclude that TNF-alpha signaling through both the p55 and p75 receptor plays important roles in the clearance of adenoviral vectors and the magnitude of the humoral immune response. Additionally, although coexpression of human IL-10 with beta-galactosidase had only modest effects on transgene expression, we demonstrate that AdV/hIL-10 is well tolerated, has extended expression compared with beta-galactosidase, and is nonimmunogenic in the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号