首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
B. anthracis is the causative agent of anthrax. Pathogenesis is primarily mediated through the exotoxins lethal factor and edema factor, which bind protective antigen (PA) to gain entry into the host cell. The current anthrax vaccine (AVA, Biothrax) consists of aluminum-adsorbed cell-free filtrates of unencapsulated B. anthracis, wherein PA is thought to be the principle target of neutralization. In this study, we evaluated the efficacy of the natural adjuvant, C3d, versus alum in eliciting an anti-PA humoral response and found that C3d conjugation to PA and emulsion in incomplete Freund's adjuvant (IFA) imparted superior protection from anthrax challenge relative to PA in IFA or PA adsorbed to alum. Relative to alum-PA, immunization of mice with C3d-PA/IFA augmented both the onset and sustained production of PA-specific antibodies, including neutralizing antibodies to the receptor-binding portion (domain 4) of PA. C3d-PA/IFA was efficacious when administered either i.p. or s.c., and in adolescent mice lacking a fully mature B cell compartment. Induction of PA-specific antibodies by C3d-PA/IFA correlated with increased efficiency of germinal center formation and plasma cell generation. Importantly, C3d-PA immunization effectively protected mice from intranasal challenge with B. anthracis spores, and was approximately 10-fold more effective than alum-PA immunization or PA/IFA based on dose challenge. These data suggest that incorporation of C3d as an adjuvant may overcome shortcomings of the currently licensed aluminum-based vaccine, and may confer protection in the early days following acute anthrax exposure.  相似文献   

2.
Monoclonal antibodies (MoAbs) were generated following immunization of BALB/c mice with protective antigen (PA) of B. anthracis. Five clones reactive to this protein were stabilized and preserved. These MoAbs could detect nanogram levels of PA when tested in ELISA. In Western blotting, they reacted with all PA preparations tested and no cross-reactivity was observed with lethal factor, edema factor of B. anthracis and with other organisms. These MoAbs could detect PA from 22 confirmed clinical isolates of B. anthracis on Western blotting and hold promise for direct detection of PA in clinical samples for diagnosing anthrax.  相似文献   

3.
A new generation anthrax vaccine is expected to target not only the anthrax protective antigen (PA) protein, but also other virulent factors of Bacillus anthracis. It is also expected to be amenable for rapid mass immunization of a large number of people. This study aimed to address these needs by designing a prototypic triantigen nasal anthrax vaccine candidate that contained a truncated PA (rPA63), the anthrax lethal factor (LF), and the capsular poly-gamma-D-glutamic acid (gammaDPGA) as the antigens and a synthetic double-stranded RNA (dsRNA), polyriboinosinic-polyribocytodylic acid (poly(I:C)) as the adjuvant. This study identified the optimal dose of nasal poly(I:C) in mice, demonstrated that nasal immunization of mice with the LF was capable of inducing functional anti-LF antibodies (Abs), and showed that nasal immunization of mice with the prototypic triantigen vaccine candidate induced strong immune responses against all three antigens. The immune responses protected macrophages against an anthrax lethal toxin challenge in vitro and enabled the immunized mice to survive a lethal dose of anthrax lethal toxin challenge in vivo. The anti-PGA Abs were shown to have complement-mediated bacteriolytic activity. After further optimization, this triantigen nasal vaccine candidate is expected to become one of the newer generation anthrax vaccines.  相似文献   

4.

Background

The poly-γ-d-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis, protects bacilli from immune surveillance and allows its unimpeded growth in the host. Recently, the importance of the PGA in the pathogenesis of anthrax infection has been reported. The PGA capsule is associated with lethal toxin (LT) in the blood of experimentally infected animals and enhances the cytotoxicity of LT.

Methods

To investigate the role of anti-PGA Abs on progression of anthrax infection, two mouse anti-PGA mAbs with Kd values of 0.8 μM and 2.6 μM respectively were produced and in silico three dimensional (3D) models of mAbs with their cognitive PGA antigen complex were analyzed.

Results

Anti-PGA mAbs specifically bound encapsulated B. anthracis H9401 and showed opsonophagocytosis activity against the bacteria with complement. The enhancement effect of PGA on LT-mediated cytotoxicity was confirmed ex vivo using mouse bone marrow-derived macrophages and was effectively inhibited by anti-PGA mAb. Passive immunization of mAb completely protected mice from PGA-enhanced LT toxicity and partially rescued mice from anthrax spore challenges. 3D structure models of these mAbs and PGA complex support specific interactions between CDR and cognitive PGA. These results indicate that mouse mAb against PGA capsule prevents the progress of anthrax disease not only by eliminating the vegetative form of encapsulated B. anthracis but also by inhibiting the enhanced cytotoxic activity of LT by PGA through specific binding with PGA capsule antigen.

General significance

Our results suggest a potential role for PGA antibodies in preventing and treating anthrax infection.  相似文献   

5.
炭疽保护性抗原(PA)是炭疽毒素的重要组分,同时也是现有炭疽疫苗的主要有效成分,在炭疽杆菌的致病与免疫中发挥关键作用。以重组PA为免疫原,采用B淋巴细胞杂交瘤技术,结合炭疽毒素敏感细胞的毒性中和试验,大量筛选抗PA单克隆抗体,获得了9株炭疽毒素中和性单抗。进一步分析表明这些单抗以IgG1亚类为主,分别识别PA 3个结构域的4个不同中和表位区。针对结构域2的4株单抗识别同一表位区,其中3株单抗的中和活性强于抗PA多抗;针对结构域4的4株单抗识别两个不同表位区;另有1株单抗识别位于结构域3的表位。实验结果提示PA具有多个中和表位,分别位于其不同结构域,其中结构域2、4包含主要中和表位。实验中获得的针对不同表位的中和性单抗为深入研究PA的免疫保护机理提供了工具,也为研制针对炭疽毒素的被动免疫制剂和治疗药物打下基础。  相似文献   

6.
The components of the Bacillus anthracis exotoxins, protective antigen (PA), lethal factor (LF), and edema factor (EF), from 24 isolates were separated by isoelectric focusing gel electrophoresis and detected by Western blot with monoclonal antibodies. Only two isoforms each were observed for PA and EF. Four isoforms were identified for LF. The biological activities of both lethal toxin and edema toxin were measured by using in vitro cell-based assays. This study provides another method of characterizing various isolates of B. anthracis by determining the isoelectric points of the exotoxin components and may be useful in the development of protective vaccines against B. anthracis infection.  相似文献   

7.
Protective antigen (PA) is a component of the Bacillus anthracis lethal and edema toxins and the basis of the current anthrax vaccine. In its heptameric form, PA targets host cells and internalizes the enzymatically active components of the toxins, namely lethal and edema factors. PA and other toxin components are secreted from B. anthracis using the Sec-dependent secretion pathway. This requires them to be translocated across the cytoplasmic membrane in an unfolded state and then to be folded into their native configurations on the trans side of the membrane, prior to their release from the environment of the cell wall. In this study we show that recombinant PA (rPA) requires the extracellular chaperone PrsA for efficient folding when produced in the heterologous host, B. subtilis; increasing the concentration of PrsA leads to an increase in rPA production. To determine the likelihood of PrsA being required for PA production in its native host, we have analyzed the B. anthracis genome sequence for the presence of genes encoding homologues of B. subtilis PrsA. We identified three putative B. anthracis PrsA proteins (PrsAA, PrsAB, and PrsAC) that are able to complement the activity of B. subtilis PrsA with respect to cell viability and rPA secretion, as well as that of AmyQ, a protein previously shown to be PrsA-dependent.  相似文献   

8.
The tripartite protein toxin of Bacillus anthracis consists of protective antigen (PA), edema factor (EF), and lethal factor (LF). As a first step in developing a more efficacious anthrax vaccine, recombinant plasmids containing the PA gene have been isolated. A library was constructed in the E. coli vector pBR322 from Bam HI-generated fragments of the anthrax plasmid, pBA1. Two clones producing PA were identified by screening lysates with ELISA (enzyme-linked immunosorbent assay). Western blots revealed a full-size PA protein in the recombinant E. coli, and a cell elongation assay demonstrated biological activity. Both positive clones had a 6 kb insert of DNA, which mapped in the Bam HI site of the vector. The two inserts are the same except that they lie in opposite orientations with respect to the vector. Thus PA is encoded by the plasmid pBA1.  相似文献   

9.
Bacillus anthracis, the causative agent of anthrax, produces a tripartite toxin composed of two enzymatically active subunits, lethal factor (LF) and edema factor (EF), which, when associated with a cell-binding component, protective antigen (PA), form lethal toxin and edema toxin, respectively. In this preliminary study, we characterized the toxin-specific antibody responses observed in 17 individuals infected with cutaneous anthrax. The majority of the toxin-specific antibody responses observed following infection were directed against LF, with immunoglobulin G (IgG) detected as early as 4 days after the onset of symptoms in contrast to the later and lower EF- and PA-specific IgG responses. Unlike the case with infection, the predominant toxin-specific antibody response of those immunized with the US anthrax vaccine absorbed and UK anthrax vaccine precipitated licensed anthrax vaccines was directed against PA. We observed that the LF-specific human antibodies were, like anti-PA antibodies, able to neutralize toxin activity, suggesting the possibility that they may contribute to protection. We conclude that an antibody response to LF might be a more sensitive diagnostic marker of anthrax than to PA. The ability of human LF-specific antibodies to neutralize toxin activity supports the possible inclusion of LF in future anthrax vaccines.  相似文献   

10.
The recent use of Bacillus anthracis as a bioweapon has stimulated the search for novel antitoxins and vaccines that act rapidly and with minimal adverse effects. B. anthracis produces an AB-type toxin composed of the receptor-binding moiety protective antigen (PA) and the enzymatic moieties edema factor and lethal factor. PA is a key target for both antitoxin and vaccine development. We used the icosahedral insect virus Flock House virus as a platform to display 180 copies of the high affinity, PA-binding von Willebrand A domain of the ANTXR2 cellular receptor. The chimeric virus-like particles (VLPs) correctly displayed the receptor von Willebrand A domain on their surface and inhibited lethal toxin action in in vitro and in vivo models of anthrax intoxication. Moreover, VLPs complexed with PA elicited a potent toxin-neutralizing antibody response that protected rats from anthrax lethal toxin challenge after a single immunization without adjuvant. This recombinant VLP platform represents a novel and highly effective, dually-acting reagent for treatment and protection against anthrax.  相似文献   

11.
The anthrax toxin consists of three proteins, protective antigen (PA), lethal factor, and edema factor that are produced by the Gram-positive bacterium, Bacillus anthracis. Current vaccines against anthrax use PA as their primary component. In this study, we developed a scalable process to produce and purify multi-gram quantities of highly pure, recombinant PA (rPA) from Escherichia coli. The rPA protein was produced in a 50-L fermentor and purified to >99% purity using anion-exchange, hydrophobic interaction, and hydroxyapatite chromatography. The final yield of purified rPA from medium cell density fermentations resulted in approximately 2.7 g of rPA per kg of cell paste (approximately 270 mg/L) of highly pure, biologically active rPA protein. The results presented here exhibit the ability to generate multi-gram quantities of rPA from E. coli that may be used for the development of new anthrax vaccines and anthrax therapeutics.  相似文献   

12.
The pag gene, which codes for protective antigen (PA), a common component of the lethal and edema toxins of Bacillus anthracis, was cloned and expressed in Escherichia coli. Nested deletions of pag were generated into the C-terminus coding region. Recombinant proteins were analyzed by Western blot with either an anti-PA polyclonal antisera or two monoclonal antibodies that neutralized lethal toxin and edema toxin activities by inhibiting the binding of PA to cell receptors. Localization of the receptor binding domain within the C-terminal region of PA was suggested by the inability of the monoclonal antibodies 3B6 and 14B7 to recognize the recombinant proteins expressed by C-terminal deletions of the pag gene.  相似文献   

13.
The fatal bacterial infection caused by inhalation of the Bacillus anthracis spores results from the synthesis of protein toxins-protective antigen (PA), lethal factor (LF), and edema factor (EF)--by the bacterium. PA is the target-cell binding protein and is common to the two effector molecules, LF and EF, which exert their toxic effects once they are translocated to the cytosol by PA. PA is the major component of vaccines against anthrax since it confers protective immunity. The large-scale production of recombinant protein-based anthrax vaccines requires overexpression of the PA protein. We have constitutively expressed the protective antigen protein in E. coli DH5alpha strain. We have found no increase in degradation of PA when the protein is constitutively expressed and no plasmid instability was observed inside the expressing cells. We have also scaled up the expression by bioprocess optimization using batch culture technique in a fermentor. The protein was purified using metal-chelate affinity chromatography. Approximately 125 mg of recombinant protective antigen (rPA) protein was obtained per liter of batch culture. It was found to be biologically and functionally fully active in comparison to PA protein from Bacillus anthracis. This is the first report of constitutive overexpression of protective antigen gene in E. coli.  相似文献   

14.
Antibodies to Bacillus anthracis protective antigen (PA) and to the lethal factor (LF) of B. anthracis exotoxin in the blood sera of anthrax patients and of subjects with a history of the disease, as well as of persons immunized with STI live vaccine, were studied by the heterogeneous enzyme immunoassay. In 1-6 years after convalescence the levels of anti-PA and anti-LF antibodies (at 75% and 96% detection rates respectively) were higher than on weeks 1-4 from the onset of the disease. In persons having had anthrax antibodies belonged mainly to IgG, and the anti-LF antibody level was higher than the anti-PA antibody level. In persons immunized with STI vaccine the detection rate of antibodies somewhat increased in 2-7 months after immunization, reaching, on the average, 72%, the antibody levels after primary immunization and regular annual booster immunization being similar. In 1-2 years after primary (booster) immunization the isolation rate of antibodies decreases to 21%. Specific features of postinfectious and postvaccinal immunity to anthrax and problems of retrospective diagnosis of this disease are discussed.  相似文献   

15.
Anthrax protective antigen (PA) plays a central role in facilitating the entry of active toxin components, namely, lethal factor and edema factor, into the cells. PA is also the main immunogen of both human and veterinary vaccine against anthrax. During host cell intoxication, protective antigen binds to the receptors on cell surface, gets proteolytically activated, oligomerizes to form a heptamer and binds to lethal factor or edema factor. The complex, formed by binding of lethal factor or edema factor to oligomerized PA, is internalized by receptor-mediated endocytosis. Acidification of the endosome results in the insertion of the heptamer into the membrane, thereby forming a pore through which lethal factor or edema factor can translocate into the cytosol. In this study we have identified hydrophobic residues, Phe552, Phe554, Ile562, Leu566, and Ile574, which are required for oligomerization of anthrax protective antigen. Mutation of these conserved residues to alanine impaired the oligomerization of protective antigen. Consequently, these mutants became nontoxic in combination with lethal factor and edema factor. Therapeutic importance of these mutants and their potential as vaccine candidates is discussed.  相似文献   

16.
Bacillus anthracis spores germinate to vegetative forms in host cells, and produced fatal toxins. A toxin-targeting prophylaxis blocks the effect of toxin, but may allow to grow vegetative cells which create subsequent toxemia. In this study, we examined protective effect of extractable antigen 1 (EA1), a major S-layer component of B. anthracis, against anthrax. Mice were intranasally immunized with recombinant EA1, followed by a lethal challenge of B. anthracis spores. Mucosal immunization with EA1 resulted in a significant level of anti-EA1 antibodies in feces, saliva and serum. It also delayed the onset of anthrax and remarkably decreased the mortality rate. In addition, the combination of EA1 and protective antigen (PA) protected all immunized mice from a lethal challenge with B. anthracis spores. The numbers of bacteria in tissues of EA1-immunized mice were significantly decreased compared to those in the control and PA alone-immunized mice. Immunity to EA1 might contribute to protection at the early phase of infection, i.e., before massive multiplication and toxin production by vegetative cells. These results suggest that EA1 is a novel candidate for anthrax vaccine and provides a more effective protection when used in combination with PA.  相似文献   

17.
炭疽是由炭疽芽孢杆菌引起的严重威胁人类健康的传染病。炭疽毒素包括3种蛋白质成分:保护性抗原(PA)、致死因子(LF)和水肿因子(EF)。PA与LF形成致死毒素(LT),与EF形成水肿毒素(ET)。由于致死毒素(LT)在感染者损伤及死亡中发挥主要作用,因此在炭疽感染晚期单纯使用抗生素治疗难以发挥疗效,治疗性中和抗体成为目前最有效的炭疽治疗药物。目前国外获得的炭疽毒素抗体多为炭疽PA抗体,美国FDA已批准瑞西巴库(人源PA单抗)用于吸入性炭疽的治疗。一旦炭疽芽孢杆菌被人为改构或PA中和表位发生突变,针对PA单一表位的抗体将可能失效,因此针对LF的抗体将成为炭疽治疗的有效补充。目前国外已有的LF抗体多为鼠源抗体和嵌合抗体,而全人源抗体可以避免鼠源抗体免疫原性高等缺点。本研究首先用LF抗原免疫人抗体转基因小鼠,利用流式细胞仪从小鼠脾淋巴细胞中分选抗原特异的记忆B细胞,通过单细胞PCR方法快速获得两株具有结合活性的抗LF单抗1D7和2B9。瞬时转染Expi 293F细胞制备抗体,通过毒素中和实验(TNA)发现1D7和2B9在细胞模型中均显示较好的中和活性,并且与PA单抗联合使用时,表现出较好的协同作用。总之,本文利用转基因小鼠、流式分选技术和单细胞PCR技术的优势,快速筛选到全人源LF抗体,为快速筛选全人源单克隆抗体开辟了新的思路与方法。  相似文献   

18.
Bacillus anthracis is the etiological agent of anthrax. Although anthrax is primarily an epizootic disease; humans are at risk for contracting anthrax. The potential use of B. anthracis spores as biowarfare agent has led to immense attention. Prolonged vaccination schedule of current anthrax vaccine and variable protection conferred; often leading to failure of therapy. This highlights the need for alternative anthrax countermeasures. A number of approaches are being investigated to substitute or supplement the existing anthrax vaccines. These relied on expression of Protective antigen (PA), the key protective immunogen; in bacterial or plant systems; or utilization of attenuated strains of B. anthracis for immunization. Few studies have established potential of domain IV of PA for immunization. Other targets including the spore, capsule, S-layer and anthrax toxin components have been investigated for imparting protective immunity. It has been shown that co-immunization of PA with domain I of lethal factor that binds PA resulted in higher antibody responses. Of the epitope based vaccines, the loop neutralizing determinant, in particular; elicited robust neutralizing antibody response and conferred 97% protection upon challenge. DNA vaccination resulted in varying degree of protection and seems a promising approach. Additionally, the applicability of monoclonal and therapeutic antibodies in the treatment of anthrax has also been demonstrated. The recent progress in the direction of anthrax prophylaxis has been evaluated in this review.  相似文献   

19.
Anthrax toxin is the only protein secreted by Bacillus anthracis that contributes to the virulence of this bacterium. An obligatory step in the action of anthrax toxin on eukaryotic cells is cleavage of the receptor-bound protective antigen (PA) protein (83 kilodaltons) to produce a 63-kilodalton, receptor-bound COOH-terminal fragment. A similar fragment can be obtained by limited treatment with trypsin. This proteolytic processing event exposes a site with high affinity for the other two anthrax toxin proteins, lethal factor and edema factor. Terminal sequencing of the purified fragment showed that the activating cleavage occurred in the sequence Arg164-Lys165-Lys166-Arg167. The gene encoding PA was mutagenized to delete residues 163-168, and the deleted PA was purified from a Bacillus subtilis host. The deleted PA was not cleaved by either trypsin or the cell-surface protease, and was non-toxic when administered with lethal factor. Purified, deleted PA protected rats when administered 90 min before injection of 20 minimum lethal doses of toxin. This mutant PA may be useful as a replacement for the PA that is the major active ingredient in the current human anthrax vaccine, because deleted PA is expected to have normal immunogenicity, but would not combine with trace amounts of LF and EF to cause toxicity.  相似文献   

20.
Current human anthrax vaccines available in the United States and Europe consist of alum-precipitated supernatant material from cultures of a toxigenic, nonencapsulated strain of Bacillus anthracis. The major component of human anthrax vaccine that confers protection is protective antigen (PA). A second-generation human vaccine using the recombinant PA (rPA) is being developed. In this study, to prevent the toxicity and the degradation of the native rPA by proteases, we constructed two PA variants, delPA (163-168) and delPA (313-314), that lack trypsin (S(163)-R(164)-K(165)-K(166)-R(167)-S(168)) or chymotrypsin cleavage sequence (F(313)-F(314)), respectively. These proteins were expressed in Bacillus brevis 47-5Q. The delPAs were fractionated from the culture supernatant of B. brevis by ammonium sulfate at 70% saturation, followed by anion exchange chromatography on a Hitrap Q, Hiload 16/60 superdex 200 gel filtration column and phenyl sepharose hydrophobic interaction column. In accordance with previous reports, both delPA proteins combined with lethal factor protein did not show any cytotoxicity on J774A.1 cells. The delPA (163-168) and delPA (313-314) formulated either in Rehydragel HPA or MPL-TDM-CWS (Ribi-Trimix), elicited a comparable amount of anti-PA and neutralizing antibodies to those of native rPA in guinea pigs, and confers full protection of guinea pigs from 50xLD50 of fully virulent B. anthracis spore challenges. Ribi-Trimix was significantly more effective in inducing anti-PA and neutralizing antibodies than Rehydragel HPA. These results indicate the possibility of delPA (163-168) and delPA (313-314) proteins being developed into nontoxic, effective and stable recombinant vaccine candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号