首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P A Whitson  K S Matthews 《Biochemistry》1986,25(13):3845-3852
The dissociation kinetics for repressor-32P-labeled operator DNA have been examined by adding unlabeled operator DNA to trap released repressor or by adding a small volume of concentrated salt solution to shift the Kd of repressor-operator interaction. The dissociation rate constant for pLA 322-8, an operator-containing derivative of pBR 322, was 2.4 X 10(-3) s-1 in 0.15 M KCl. The dissociation rate constant at 0.15 M KCl for both lambda plac and pIQ, each of which contain two pseudooperator sequences, was approximately 6 X 10(-4) s-1. Elimination of flanking nonspecific DNA sequences by use of a 40 base pair operator-containing DNA fragment yielded a dissociation rate constant of 9.3 X 10(-3) s-1. The size and salt dependences of the rate constants suggest that dissociation occurs as a multistep process. The data for all the DNAs examined are consistent with a sliding mechanism of facilitated diffusion to/from the operator site. The ability to form a ternary complex of two operators per repressor, determined by stoichiometry measurements, and the diminished dissociation rates in the presence of intramolecular nonspecific and pseudooperator DNA sites suggest the formation of an intramolecular ternary complex. The salt dependence of the dissociation rate constant for pLA 322-8 at high salt concentrations converges with that for a 40 base pair operator. The similarity in dissociation rate constants for pLA 322-8 and a 40 base pair operator fragment under these conditions indicates a common dissociation mechanism from a primary operator site on the repressor.  相似文献   

2.
N Toki  S Takasugi  H Sumi 《Enzyme》1981,26(4):221-224
The kinetic parameters of three different molecular forms of urokinase (UK) for the activation of native Glu-plasminogen were compared. The apparent Michaelis constant (Km. app.) of each UK was almost of the same order of magnitude (31-38 microM), but the catalytic constants (kc) were observed to be different: UKh (high molecular weight form, molecular weight 53,000), 2.4 +/- 0.2 s-1; UK+ (low molecular weight form, molecular weight 33,000), 0.83 +/- o.10 s-1, and UKl (trypsin-digested form, molecular weight 36,000), 0.91 +/- 0.18 s-1. The overall second order rate constant, kc/Km calculated for UKh was 7.7 X 10(4) M-1 s-1, higher than for UKl (2.2 X 10(4) M-1 s-1) or UKt (2.4 X 10(4) M-1 s-1), indicating the possibility of a much higher degree of enzymatic specificity and efficiency.  相似文献   

3.
Phalloidin enhances actin assembly by preventing monomer dissociation   总被引:20,自引:11,他引:9       下载免费PDF全文
Incubation of the isolated acrosomal bundles of Limulus sperm with skeletal muscle actin results in assembly of actin onto both ends of the bundles. These cross-linked bundles of actin filaments taper, thus allowing one to distinguish directly the preferred end for actin assembly from the nonpreferred end; the preferred end is thinner. Incubation with actin in the presence of equimolar phalloidin in 100 mM KCl, 1 mM MgCl2 and 0.5 mM ATP at pH 7.5 resulted in a slightly smaller association rate constant at the preferred end than in the absence of the drug (3.36 +/- 0.14 X 10(6) M-1 s-1 vs. 2.63 +/- 0.22 X 10(6) M-1 s- 1, control vs. experimental). In the presence of phalloidin, the dissociation rate constant at the preferred end was reduced from 0.317 +/- 0.097 s-1 to essentially zero. Consequently, the critical concentration at the preferred end dropped from 0.10 microM to zero in the presence of the drug. There was no detectable change in the rate constant of association at the nonpreferred end in the presence of phalloidin (0.256 +/- 0.015 X 10(6) M-1 s-1 vs. 0.256 +/- 0.043 X 10(6) M-1 s-1, control vs. experimental); however, the dissociation rate constant was reduced from 0.269 +/- 0.043 s-1 to essentially zero. Thus, the critical concentration at the nonpreferred end changed from 1.02 microM to zero in the presence of phalloidin. Dilution-induced depolymerization at both the preferred and nonpreferred ends was prevented in the presence of phalloidin. Thus, phalloidin enhances actin assembly by lowering the critical concentration at both ends of actin filaments, a consequence of reducing the dissociation rate constants at each end.  相似文献   

4.
The molecule 3',6'-bis(4-guanidinobenzoyloxy)-5-[N'-(4-carboxyphenyl)thioureido[spirop]isobenzofuran-1-(3H),9'-[9H]xanthen]-3-one, abbreviated FDE, was designed and synthesized as a fluorogenic active-site titrant for serine proteases. It is an analogue of p-nitrophenyl p-guanidino-benzoate (NPGB) in which a fluorescein derivative is substituted for p-nitrophenol. FDE and NPGB exhibit similar kinetic characteristics in an active-site titration of trypsin in phosphate-buffered saline, pH 7.2. The rate of acylation with FDE is extremely fast (k2 = 1.05 s-1) and the rate of deacylation extremely slow (k3 = 1.66 X 10(-5) s-1). The Ks is 3.06 X 10(-6) M, and the Km(app) is 4.85 X 10(-11) M. With two of the serine proteases involved in fibrinolysis, the rate of acylation with FDE is also fast, K2 = 0.112 s-1 for urokinase and 0.799 s-1 for plasmin, and the rate of deacylation is slow, k3 = 3.64 X 10(-4) s-1 for urokinase and 6.27 X 10(-6) s-1 for plasmin. The solubility limit of FDE in phosphate-buffered saline is 1.3 X 10(-5) M, and the first-order rate constant for spontaneous hydrolysis is 5.1 X 10(-6) s-1. The major difference between FDE and NPGB is the detectability of the product in an active-site titration. p-Nitrophenol can be detected at concentrations no lower than 10(-6) M whereas fluorescein can be detected at concentrations as low as 10(-12) M. Thus, FDE should be useful in quantitatively assaying serine proteases as very low concentrations.  相似文献   

5.
We have investigated the inhibition of human leukocyte elastase and cathepsin G by recombinant Eglin c under near physiological conditions. The association rate constants k on of Eglin c for elastase and cathepsin G were 1.3 X 10(7) M-1 s-1 and 2 X 10(6) M-1 s-1, respectively. Under identical conditions, the k on for the association of human plasma alpha 1-proteinase inhibitor with the two leukocproteinases were 2.4 X 10(7) M-1 s-1 and 10(6) M-1 s-1, respectively. The consistency of these data could be verified using a set of competition experiments. The elastase-Eglin c interaction was studied in greater detail. The dissociation rate constant k off was determined by trapping of free elastase from an equilibrium mixture of elastase and Eglin c with alpha 1-proteinase inhibitor or alpha 2-macroglobulin. The rate of dissociation was very low (k off = 3.5 X 10(-5) s-1). The calculated equilibrium dissociation constant of the complex, Ki(calc) = k off/k on, was found to be 2.7 X 10(-12) M. Ki was also measured by adding elastase to mixtures of Eglin c and substrate and determining the steady-state rates of substrate hydrolysis. The Ki determined from these experiments (7.5 X 10(-11) M) was significantly higher than Ki(calc). This discrepancy might be explained by assuming that the interaction of Eglin c with elastase involves two steps: a fast binding reaction followed by a slow isomerization step. From the above kinetic constants it may be inferred that at a therapeutic concentration of 5 X 10(-7) M, Eglin c will inhibit leukocyte elastase in one second and will bind this enzyme in a "pseudo-irreversible" manner.  相似文献   

6.
The equilibrium constant for binding of the gelsolin-actin complex to the barbed ends of actin filaments was measured by the depolymerizing effect of the gelsolin-actin complex on actin filaments. When the gelsolin-actin complex blocks monomer consumption at the lengthening barbed ends of treadmilling actin filaments, monomers continue to be produced at the shortening pointed ends until a new steady state is reached in which monomer production at the pointed ends is balanced by monomer consumption at the uncapped barbed ends. By using this effect the equilibrium constant for binding was determined to be about 1.5 X 10(10) M-1 in excess EGTA over total calcium (experimental conditions: 1 mM MgCl2, 100 mM KCl, pH 7.5, 37 degrees C). In the presence of Ca2+ the equilibrium constant was found to be in the range of or above 10(11) M-1. The rate constant of binding of the gelsolin-actin complex to the barbed ends was measured by inhibition of elongation of actin filaments. Nucleation of new filaments by the gelsolin-actin complex towards the pointed ends was prevented by keeping the monomer concentration below the critical monomer concentration of the pointed ends where the barbed ends of treadmilling actin filaments elongate and the pointed ends shorten. The gelsolin-actin complex was found to bind fourfold faster to the barbed ends in the presence of Ca2+ (10 X 10(6) M-1 s-1) than in excess EGTA (2.5 X 10(6) M-1 s-1). Dissociation of the gelsolin-actin complex from the barbed ends can be calculated to be rather slow. In excess EGTA the rate constant of dissociation is about 1.7 X 10(-4) s-1. In the presence of Ca2+ this dissociation rate constant is in the range of or below 10(-4) s-1.  相似文献   

7.
Simultaneous diffusion of inositol and mannitol in the rat brain   总被引:1,自引:0,他引:1  
The diffusion of both inositol and mannitol has been determined simultaneously by the integral bolus method in rat brain. The permeability constant (Kin) of inositol averaged 0.27 +/- 0.02 ml X (100 g)-1 X min-1 or 4 X 10(-7) cm X s-1 at a cerebral capillary surface area of 100 cm2 x g-1. The permeability of mannitol was 0.08 +/- 0.01 ml X (100 g)-1. min-1 or 1 X 10(-7) cm X s-1. Neither glucose nor galactose affected the inositol permeability. Hypoglycemia increased somewhat the Km value for mannitol. The basal ganglia showed an increase Km for both substrates as compared with those obtained for cortex, temporal and parietal tissues.  相似文献   

8.
LexA repressor of Escherichia coli and phage lambda repressor are inactivated in vivo and in vitro by specific cleavage of an Ala-Gly peptide bond in reactions requiring RecA protein. At mildly alkaline pH, the in vitro cleavage reaction also proceeds spontaneously, suggesting that peptide bond hydrolysis is an activity of the repressors rather than of RecA. The spontaneous cleavage reaction, termed "autodigestion", has been characterized for the LexA and lambda repressors. The results show that the reaction is intramolecular. The rate of LexA autodigestion was studied over the pH range 7.15-11.77 and over the temperature range 4-46 degrees C. The logarithm of the rate constant increased linearly with pH and reached a plateau value (2.5 X 10(-3) s-1 at 37 degrees C) at pH above 10. The data closely followed a model in which a single residue side chain (apparent pK = 9.8 at 37 degrees C) must be deprotonated for the protein to show activity. Analysis of the temperature dependence gave the heat of proton dissociation as 19.9 kcal/mol and the heat of activation for hydrolysis as 15.3 kcal/mol at 25 degrees C. Autodigestion of lambda repressor, studied over the pH range 8.65-10.70 at 37 degrees C, was similar to the LexA reaction in its pH dependence, yielding a pK of 9.8. The maximum rate at 37 degrees C for lambda repressor, 6.1 X 10(-5) s-1, was 40 times slower than for LexA, a difference similar to that previously observed in vivo and in vitro for RecA-dependent cleavage reactions. There was no significant solvent deuterium isotope effect on the autodigestion of LexA. Changes in buffer composition, including high concentrations of glycine for lambda repressor and of imidazole or hydroxylamine for LexA, indicated that solvent components other than water do not participate in the rate-determining step. Removal or addition of metal ions did not significantly affect LexA autodigestion. These and other observations suggest that the deprotonated form of an amino acid side chain plays a central role in the chemistry of the cleavage reaction. The above observations establish repressor autodigestion as a member of an emerging set of biologically important self-processing reactions.  相似文献   

9.
The reduction kinetics of NADPH:cytochrome P-450 reductase have been investigated by the laser flash photolysis technique, using the semiquinone of 5-deazariboflavin (5-dRfH.) as the reductant. Transients observed at 470 nm at neutral pH indicated that the oxidized reductase was reduced via second-order kinetics with a rate constant of 6.8 X 10(7) M-1 s-1. The second-order rate constant corresponding to the formation of the protein-bound semiquinone (measured at 585 nm) was essentially the same as that obtained at 470 nm (7.1 X 10(7) M-1 s-1). Subsequent to this rapid formation of protein-bound semiquinone, a partial exponential decay was observed at 585 nm. The rate of this decay remained invariant with protein concentration between pH 5.0 and 7.0, and a first-order rate constant of 70 s-1 was obtained for this process. This is assigned to intramolecular electron transfer from FADH. to FMN. Prior reduction of the enzyme to the one-electron level led to a decrease in both the second-order rate constant for reduction (2 X 10(7) M-1 s-1) and the first-order intraflavin electron transfer rate constant (15 s-1). The protein-bound FAD moiety of FMN-depleted reductase was reduced by 5-dRfH. with a second-order rate constant that was identical with that observed with the native enzyme (6.9 X 10(7) M-1 s-1). However, with this species no significant decay of the FAD semiquinone was observed at 585 nm following its rapid formation, consistent with the above assignment of this kinetic process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Stopped-flow kinetics were made of the reaction between ascorbate-reduced Pseudomonas cytochrome oxidase and potassium ferricyanide under both N2 and CO atmospheres. Under N2 three kinetic processes were observed, two being dependent on ferricyanide concentration, with second-order rate constants of 9.6 X 10(4)M-1.s-1 and 1.5 X 10(4)M-1.s-1, whereas the other was concentration-independent, with a first-order rate constant of 0.17 +/- 0.03s-1. Measurements of their kinetic difference spectra have allowed the fastest and second-fastest phases of the reaction to be assigned to direct bimolecular reactions of ferricyanide with the haem c and haem d, moieties of the enzyme respectively. Under CO, the second-order rate constant for the reaction of the haem c was, at 1.3 X 10(5)M-1.s-1, slightly enhanced over the rate in a N2 atmosphere, but the reaction velocity of the haem d1 component was greatly decreased, being apparently limited to that of the rates of CO dissociation from the molecule (0.15s-1 and 0.03s-1). The results are compared with those obtained during a previous study of the reaction of reduced Pseudomonas cytochrome oxidase with oxidized azurin.  相似文献   

11.
The kinetics of reduction of spinach ferredoxin (Fd), ferredoxin-NADP+ reductase (FNR), and the Fd-FNR complex have been investigated by the laser flash photolysis technique. 5-Deazariboflavin semiquinone (5-dRf), generated in situ by laser flash photolysis under anaerobic conditions, rapidly reduced both oxidized Fd (Fdox) (k = 2 X 10(8) M-1 s-1) and oxidized FNR (FNRox) (K = 6.3 X 10(8) M-1 s-1) at low ionic strength (10 mM) at pH 7.0, leading to the formation of reduced Fd (Fdred) and FNR semiquinone (FNR.), respectively. At higher ionic strengths (310 and 460 mM), the rate constant for the reduction of the free Fdox increased about 3-fold (k = 6.7 X 10(8) M-1 s-1 at 310 mM and 6.4 X 10(8) M-1 s-1 at 460 mM). No change in the second-order rate constant for reduction of the free FNRox was observed at high ionic strength. At low ionic strength (10 mM), 5-dRf. reacted only with the FAD center of the preformed 1:1 Fdox-FNRox complex (k = 5.6 X 10(8) M-1 s-1), leading to the formation of FNR.. No direct reduction of Fdox in the complex was observed. No change in the kinetics occurred in the presence of excess NADP+. The second-order rate constant for reduction of Fdox by 5-dRf. in the presence of a stoichiometric amount of fully reduced FNR at low ionic strength was 7 X 10(6) M-1 s-1, i.e., about one-thirtieth the rate constant for reduction of free Fdox.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Binding of [125I]-alpha-bungarotoxin to rat brain was investigated. Picomole quantities of specific toxin binding sites per gram of fresh tissue were found in particulate preparations as well as detergent extracts of whole brain. The toxin-binding macromolecules can be solubilized in low concentrations of Triton X-100. Specific binding occurs to a single class of sites with a dissociation constant of 5.6 X 10(-11) M. The association rate constant in 10 mM sodium phosphate, pH 7.4, was determined to be 6.8 X 10(5) M-1 s-1; the half-life of the complex was found to be 5.1 h, corresponding to a dissociation rate constant of 3.8 X 10(-5) s-1. The binding macromolecules resemble peripheral nicotinic acetylcholine receptors in toxin binding kinetics, solubility, isoelectric point, and hydrodynamic properties.  相似文献   

13.
Receptors for the nerve growth factor protein (NGF) have been isolated from three cell types [embryonic chicken sensory neurons (dorsal root sensory ganglia; DRG), rat pheochromocytoma (PC12) and human neuroblastoma (LAN-1) cells] and have been shown to be similar with respect to equilibrium dissociation constants. The present results demonstrate that there are multiple molecular weight species for NGF receptors from DRG neurons and PC12 cells. NGF receptors can be isolated from DRG as four different molecular species of 228, 187, 125, and 112 kilodaltons, and PC12 cells as three molecular species of 203, 118, and 107 kilodaltons. The NGF receptors isolated from DRG show different pH-binding profiles for high- and low-affinity binding. High-affinity binding displays a bell-shaped pH profile with maximum binding between pH 7.0 and 7.9, whereas low-affinity binding is constant between pH 5.0 and 9.1, with a twofold greater binding at pH 3.6. At 22 degrees C, the association rate constant was found to be 9.5 +/- 1.0 X 10(6) M-1 s-1. Two dissociation rate constants were observed. The fast dissociating receptor has a dissociation rate constant of 3.0 +/- 1.5 X 10(-2) s-1, whereas the slow dissociating receptor constant was 2.4 +/- 1.0 X 10(-4) s-1. The equilibrium dissociation constants calculated from the ratio of dissociation to association rate constants are 2.5 X 109-11) M for the high-affinity receptor (type I) and 3.2 X 10(-9) M for the low-affinity receptor (type II). These values are the same as those determined by equilibrium experiments on the isolated receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Camphor binding to a possible receptor of rat olfactory epithelium has been studied within the ligand concentration range 10(-11)-10(-6) M. At these concentrations camphor is bound by a set of receptors. They are distinguished by both the affinity to the ligand (K1 = 5 X 10(-10) M, K2 = 3.5 X 10(-8) M, K3 approximately equal to 10(-6) M) and their amount in the epithelium. The differences in the affinities are due to different values of the association rate constant of camphor (k1), which varies from 10(6) M-1 X s-1 for the receptors with high affinity up to 2 X 10(2) M-1 X s-1 for those with low affinity. These data are discussed in terms of equilibrium and kinetic models of the receptor-stimulus interaction.  相似文献   

15.
The nerve cord of the cockroach (Periplaneta americana) contains distinct saturable components of specific binding for the ligands N-[propionyl-3H]propionylated alpha-bungarotoxin and L-[benzilic-4,4'-3H]quinuclidinyl benzilate. N-[Propionyl-3H]propionylated alpha-bungarotoxin bound reversibly to homogenates with a Kd of 4.8 nM and Bmax of 910 fmol mg-1. The association rate constant (1.9 X 10(5) M-1 s-1) and dissociation rate constant (1.2 X 10(-4) s-1) yielded a Kd of 0.6 nM. Nicotinic ligands were found to displace toxin binding most effectively. The binding sites characterized in this way showed many similarities with the properties of the vertebrate neuronal alpha-bungarotoxin binding site. For a range of cholinergic ligands, inhibition constants calculated from toxin binding studies closely corresponded to their effectiveness in blocking the depolarizing response to acetylcholine recorded by electrophysiological methods from an identified cockroach motoneurone. The N-[propionyl-3H]propionylated alpha-bungarotoxin binding component therefore appears to be a constituent of a functional CNS acetylcholine receptor. Binding of L-[benzilic-4,4'-3H]quinuclidinyl benzilate was reversible with a Kd of 8 nM and Bmax of 138 fmol mg-1, determined from equilibrium binding experiments. The Kd calculated from the association rate constant (2.4 X 10(5) M-1 s-1) and dissociation rate constant (1.3 X 10(-4) s-1) was 1.9 nM. Muscarinic ligands were the most potent inhibitors of quinuclidinyl benzilate binding. The characteristics of this binding site resembled those of vertebrate CNS muscarinic cholinergic receptors. In contrast with vertebrate CNS, the nerve cord of Periplaneta americana contains more (approximately X 7) alpha-bungarotoxin binding sites than quinuclidinyl benzilate binding sites.  相似文献   

16.
Sequestration of iontophoretically injected Ca2+ by monolayer culture cells (primary Xenopus laevis Tadpole Heart cells, XTH P, and an established cell line, XTH 2) is investigated. Injections are made at different velocities by changing the influx current. On Ca2+ injection the entire ER desintegrates, and near to the tip of the injecting pipette microtubules depolymerize. The time required to attain cell death is taken as the parameter indicating an overload of cellular Ca2+ sequestration capability. Three different Ca2+ transport kinetics are found: at Ca2+ flux rates of up to 20 X 10(-15) mol X s-1 (condition I) cells can tolerate long injection periods before they die; at flux rates from 20 to 40 X 10(-15) mol X s-1 (condition II) the injection time before cell death remains constant. Flux rates exceeding 40 X 10(-15) mol X s-1 decrease cellular Ca2+ sequestration capability to a minimum. These observations support the assumption of two Ca2+ sequestrating mechanisms: one of high affinity, but with low capacity (less than = 5 X 10(-15) mol X s-1) the other with low affinity for Ca2+ and a high capacity (10 to 40 X 10(-15) mol X s-1) for Ca2+ accumulation. Both mechanisms are saturable. As the Ca2+ sequestration velocity remains approximately constant in condition II, the capacity of the second mechanism seems to grow with increasing Ca2+ influx. The highly affin Ca2+ compartment is the ER, mitochondria form the less affin system. XTH 2 differ from primary cells by possessing a 5 to 8 fold higher Ca2+ sequestration capacity, whereas sequestration velocity is equal in both cell types.  相似文献   

17.
1. The dependences of the reduction of ferricytochrome c-555 in the reaction center-cytochrome c complex on the redox potential and pH were investigated using N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), ferrocyanide, and reduced 2,5-dimethyl-p-quinone as electron donors. 2. In the reduction of cytochrome c-555 by TMPD, the unprotonated form was the exclusive electron donor to the cytochrome with a second-order rate constant of 1.0 X 10(5) M-1.s-1. 3. Ferrocyanide reduced cytochrome c-555 slowly with a rate constant of 7.8 X 10(3) M-1.s-1 at infinite salt concentration. The value of -5.2 X 10(-4) elementary charge/A2 was estimated as the surface charge density in the vicinity of cytochrome c-555 by analyzing the salt effect on the cytochrome reduction using the Gouy-Chapman theory. 4. The characteristics of the dependences of the reduction of cytochrome c-555 by reduced 2,5-dimethyl-p-quinone on the redox potential and pH were well explained by the redox potential and pH dependences of the formation of the semiquinone. In the neutral-to-alkaline pH range the anionic semiquinone was the main electron-donating species with a second-order rate constant of 6.0 X 10(7) m-1.s-1.  相似文献   

18.
Bilirubin oxidase has been used to probe the surface topography of phycocyanins (C-phycocyanin and phycocyanin-645), peridinin-chlorophyll a-protein and phytochrome. The enzyme catalyzes oxidation of the tetrapyrrolic chromophores in these proteins. Relative rates of oxidation were 78.0 X 10(-6) s-1 (monitored at 617 nm) and 58.0 X 10(-6) s-1 (592 nm) for C-phycocyanin, 43.0 X 10(-6) s-1 for phycocyanin-645, 0.3 X 10(-6) s-1 (at 671 nm) and 1.3 X 10(-6) s-1 (at 480 nm) for peridinin-chlorophyll a-protein. The relative rate of free chlorophyllin a was 2.8 X 10(4) s-1 whereas upon binding to human serum albumin its rate of oxidation was reduced to 3.3 X 10(-3) s-1. Relative rates for the oxidation of Pr and Pfr forms of phytochrome were 2.9 and 19.5 s-1, respectively, which are consistent with earlier finding [( 1984) Plant Physiol. 74, 755-758] that indicated a preferential exposure of tetrapyrrolic chromophore in the Pfr form. In general, kcat/Km values derived from the Lineweaver-Burk plots followed the same trend as the relative rates of oxidation. For example, the kcat/Km for the free chlorophyllin a was 2.8 X 10(6) M-1 s-1 but it was only 1.1 M-1s-1 for the chlorophyll a in peridinin-chlorophyll a-protein where the chlorophyll is shielded by protein. These results reflect varying degrees of protection of the tetrapyrrolic chromophores from the enzymatic oxidation and prove that bilirubin oxidase can be generally used as a probe for deducing the topography of tetrapyrrolic chromophores.  相似文献   

19.
Activated bovine plasma protein C (APC) was not reactive with the substrate p-nitrophenyl p-guanidinobenzoate (NPGB) in the absence of cations. In the presence of increasing concentrations of Na+, the acylation rate constant, k2,app, at 7 degrees C, progressively increased from 0.32 +/- 0.03 s-1 at 12.5 mM Na+ to 1.15 +/- 0.10 s-1 at 62.5 mM Na+. A linear dependence of the reciprocal of k2,app with [Na+]-2 was observed, indicating that at least two monovalent cation sites, or classes of sites, are necessary for the catalytic event to occur. From this latter plot, the k2,max for APC catalysis of NPGB hydrolysis, at saturating [Na+] and [NPGB], was calculated to be 1.21 +/- 0.10 s-1, and the Km for Na+ was found to be 21 +/- 3 mM. The dissociation constant, Ks, for NPGB to APC, at 7 degrees C, was not altered as [Na+] was increased, yielding a range of values of 18.5 X 10(-5) to 19.9 X 10(-5) M as [Na+] was varied from 12.5 to 62.5 mM. The deacylation rate constant, k3, for p-guanidinobenzoyl-APC hydrolysis was also independent of [Na+], with a value of (3.8 +/- 1.0) X 10(-3) s-1 in the absence of Na+ or in the presence of concentrations of Na+ up to 200 mM. Identical kinetic behavior was observed when Cs+ was substituted for Na+ in the above enzymic reaction. The pre-steady-state kinetic parameters were calculated according to the same methodology as described above.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Chiral instability at sulfur of S-adenosylmethionine   总被引:1,自引:0,他引:1  
S-Adenosylmethionine, generated enzymically in chirally pure form (S configuration at sulfur), undergoes simultaneous irreversible conversion to 5'-deoxy-5'-(methylthio)adenosine and homoserine with a rate constant of 6 X 10(-6) s-1 at pH 7.5 and 37 degrees C and reversible conversion to an enzymically inactive stereoisomer (R configuration at sulfur) with a forward rate constant of 8 X 10(-6) s-1 at pH 7.5 and 37 degrees C. These forms of instability require small turnover times and/or stabilization through macromolecular binding for S-adenosylmethionine, if organisms that utilize it are to avoid losses of metabolic energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号