首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1,6-缩水-β-D-吡喃葡萄糖是纤维素类物质热解的主要产物,黑曲霉突变株CBX-209能较好地利用该糖作为唯一的碳源和能源生长并产生有用的代谢产物柠檬酸,其效率与利用葡萄糖大致相当。利用葡萄糖氧化酶和竦根过氧化物酶复合系统测定证明该菌株不存在1,6-缩水-β-D-吡喃葡萄糖水解酶,采用快原子轰击质谱技术结合6-磷酸葡萄糖脱氢酶系统进行测定,结果表明经(NH4)2SO4沉淀或阴离子交换层析析处理后的无细胞提取液在加入ATP和Mg^2 条件下能直接催化1,6-缩水-β-D-吡喃葡萄糖合成6-磷酸葡萄糖,证明黑曲霉突变株中存在一个新酶,即1,6-缩水-β-D-吡喃葡萄糖激酶。该酶为诱导酶。  相似文献   

2.
1. Activation of glucose 6-phosphate is one of the unique properties of pyruvate kinase from Mycobacterium smegmatis. 2. Pyruvate kinase, partially purified from ultrasonic extracts of the mycobacteria by (NH4)2SO4 fractionation, exhibited sigmoidal kinetics at various concentrations of phosphoenolpyruvate, with a high degree of co-operativity (Hill coefficient, h = 3.7) and S0.5 value of 1.0 mM. 3. In the presence of glucose 6-phosphate, the degree of co-operativity shown by the phosphoenolpyruvate saturation curve was decreased to h = 2.33 and the S0.5 value was lowered to 0.47 mM. 4. The enzyme was activated by AMP and ribose 5-phosphate also, but the activation constant was lowest with glucose 6-phosphate (0.24 mM). 5. The enzyme was strongly inhibited by ATP at all phosphoenolpyruvate concentrations. The concentrations of ATP required to produce half-maximal inhibition of enzyme activity at non-saturating (0.2 mM) and saturating (2 mM) phosphoenolpyruvate concentrations were 1.1 mM and 3 mM respectively. 6. The inhibition of ATP was partially relieved by glucose 6-phosphate. 7. The enzyme exhibited Michaelis-Menten kinetics with ADP as the variable substrate, with an apparent Km of 0.66 mM. 8. The enzyme required Mg2+ or Mn2+ ions for activity. It was not activated by univalent cations. 9. The kinetic data indicate that under physiological conditions glucose 6-phosphate probably plays a significant role in the regulation of pyruvate kinase activity.  相似文献   

3.
Type I hexokinase (ATP:D-hexose 6-phospotransferase, EC 2.7.1.1) of porcine heart exists in two chromatographically distinct forms. These do not differ significantly in size, electrophoretic mobility at pH 8.6 or kinetic properties. Both forms obey a sequential mechanism and are potently inhibited by glucose 6-phosphate. In contrast to observations of type I hexokinase from brain, inhibition by glucose 6-phosphate is not relieved by inorganic phosphate. Under most conditions, low concentrations of phosphate (less than 10 mM) have little effect on the kinetic behaviour of the enzyme but at higher concentrations this ligand is an inhibitor. Mannose 6-phosphate inhibits in a manner analogous to glucose 6-phosphate but the Ki is much greater. In view of the similarity of the kinetic parameters governing phosphorylation of mannose and glucose, this difference in affinity for the inhibitor site is seen as consistent with the existence of a separate regulatory site on the enzyme. MgADP inhibits hexokinase but behaves as a normal product inhibitor and inhibition is competitive with respect to MgATP and non-competitive with respect to glucose.  相似文献   

4.
Hexokinase is released from Type A sites of brain mitochondria in the presence of glucose 6-phosphate (Glc-6-P); enzyme bound to Type B sites remains bound. Hexokinase of freshly isolated bovine brain mitochondria (Type A:Type B, approximately 40:60) selectively uses intramitochondrial ATP as substrate and is relatively insensitive to the competitive (vs ATP) inhibitor and Glc-6-P analog, 1,5-anhydroglucitol 6-phosphate (1,5-AnG-6-P). After removal of hexokinase bound at Type A sites, the remaining enzyme, bound at Type B sites, does not show selectivity for intramitochondrial ATP and has increased sensitivity to 1,5-AnG-6-P. Thus, the properties of the enzyme bound at Type B sites are modified by removal of hexokinase bound at Type A sites. It is suggested that mechanisms for regulation of mitochondrial hexokinase activity, and thereby cerebral glycolytic metabolism, may depend on the ratio of Type A:Type B sites, which varies in different species.  相似文献   

5.
Initial rate, product inhibition, and alternate substrate studies of purified glucose 6-phosphate dehydrogenase of human blood platelets give results consistent with an Ordered BiBi reaction mechanism. NADP appears to be the first substrate to bind and NADPH the last product to be released. ADP and ATP inhibitions are both competitive with respect to glucose 6-phosphate. ADP inhibition is noncompetitive with respect to NADP. ATP inhibition with respect to NADP is complex and is interpreted to indicate that there are two ATP binding sites on the enzyme, one for which NADP can compete and one for which glucose 6-phosphate can compete.  相似文献   

6.
Type I hexokinase (ATP:d-hexose 6-phospotransferase, EC 2.7.1.1) of porcine heart exists in two chromatographically distinct forms. These do not differ significantly in size, electrophoretic mobility at pH 8.6 or kinetic properties. Both forms obey a sequential mechanism and are potently inhibited by glucose 6-phosphate. In contrast to observations of type I hexokinase from brain, inhibition by glucose 6-phosphate is not relieved by inorganic phosphate. Under most conditions, low concentrations of phosphate (<10 mM) have little effect on the kinetic behaviour of the enzyme but at higher concentrations this ligand is an inhibitor. Mannose 6-phosphate inhibits in a manner analogous to glucose 6-phosphate but the Ki is much greater. In view of the similarity of the kinetic parameters governing phosphorylation of mannose and glucose, this difference in affinity for the inhibitor site is seen as consistent with the existence of a separate regulatory site on the enzyme. MgADP inhibits hexokinase but behaves as a normal product inhibitor and inhibition is competitive with respect to MgATP and non-competitive with respect to glucose.  相似文献   

7.
The purification of Neurospora crassa myo-inositol-1-phosphate synthase (EC 5.5.1.4) was studied by affinity chromatography using the substrate (glucose-6-phosphate), the inhibitor (pyrophosphate), the coenzyme (NAD+) and the coenzyme analogues (5'AMP and Cibacron Blue F3G-A) of the enzyme as adsorbents attached to agarose gel. Myo-inositol-1-phosphate synthase could be separated completely from the contaminating substance, glucose-6-phosphate dehydrogenase (EC 1.1.1.49), on Blue Sepharose CL-6B and on pyrophosphate-Sepharose. The purified enzyme had a specific activity of 16 400 U/mg. The sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the 60 micrograms of this purified enzyme gave a homogenous band. The enzyme was found to be composed of four identical subunits having a molecular weight of 65 000.  相似文献   

8.
Phosphorylase b and a were covalently modified on essentially one -- SH group per subunit by a spin label 4-(2-iodoacetamido)2,2,6,6-tetramethyl piperidinyloxyl. The labelled enzyme is fully active and exhibits all the characteristics of the native molecule. The electron spin resonance spectrum of the label depends on the nature of the ligand that is bound to the enzyme. This property of the spin label is used to study the interaction between the enzyme (both in the b and a forms) and activators (AMP, IMP, CMP), inhibitors (ADP, ATP, UDPG, glucose 6-phosphate), substrates (phosphate and glucose 1-phosphate) and other ligands (adenosine, beta-glycerol-2-phosphate). The interactions are analysed in terms of the apparent ligand dissociation constants and the multiplicity of conformations that this regulatory enzyme exhibits.  相似文献   

9.
Mitochondrial-bound glycerol kinase in rat brain was examined with reference to factors involved in the binding and significance of the binding in relation to ATP metabolism inside the mitochondria. The mitochondrial-bound glycerol kinase was solubilized with glycerol 3-phosphate or ADP, and the solubilized enzyme was rebound to mitochondria by addition of divalent cations. The rebinding was decreased by the presence of glycerol 3-phosphate, while was increased by glucose 6-phosphate. Positive correlation was found between the formation of glycerol 3-phosphate by mitochondrial-bound glycerol kinase and ATP content in mitochondria in experiments using various concentrations of succinate and ADP. On the other hand, glycerol 3-phosphate formation was inhibited by addition of inhibitors for mitochondria functions, such as oligomycin, dinitrophenol, cyanide, and atractyloside. Furthermore, formation of dihydroxyacetone phosphate from glycerol was proved, indicating the involvement of glycerol kinase in glycerol phosphate shuttle in combination with glycerol phosphate dehydrogenase. These findings are discussed in comparison with those of mitochondrial-bound hexokinase.  相似文献   

10.
The purification of Neurospora crassa myo-inositol-1-phosphate synthase (EC 5.5.1.4) was studied by affinity chromatography using the substrate (glucose-6-phosphate), the inhibitor (pyrophosphate), the coenzyme (NAD+) and the coenzyme analogues (5′AMP and Cibacron Blue F3G-A) of the enzyme as adsorbents attached to agarose gel. Myo-inositol-1-phosphate synthase could be separated completely from the contaminating substance, glucose-6-phosphate dehydrogenase (EC 1.1.1.49), on Blue Sepharose CL-6B and on pyrophosphate-Sepharose. The purified enzyme had a specific activity of 16 400 U/mg. The sodium dodecyl sulfate/polyacrylamide gel electrophoresis of 60 μq of this purified enzyme gave a homogenous band. The enzyme was found to be composed of four identical subunits having a molecular weight of 65 000.  相似文献   

11.
Hexokinase (HK) is the first enzyme of glycolysis pathway. In brain, most dominant form of HK, HK-I, binds reversibly to the outer mitochondria membrane. Those metabolites that affect binding or releasing of the enzyme from the mitochondria have regulatory effect on glucose consumption of the cell. In this study destructive effect of phenylalanine and its metabolites in relation to glucose metabolism in brain have been studied. The results show that phenylpyruvic acid decreases the activity of enzyme in the presence and absence of glucose-6-phosphate (G6P) and increases the release of the enzyme from mitochondria, whereas phenylalanine and phenyllactic acid have no such effects. Obtained Interactions and elicited binding energies of docking and MD simulations also showed more affinity for phenylpyruvic acid compared with the other potent inhibitors for hexokinase after the natural product of G6P. It is possible that phenylpyruvic acid is the cause of the reduction of glucose consumption by decreasing hexokinase activity and the higher inhibitory function. Therefore, production of ATP declines in brain cells.  相似文献   

12.
1. The inhibition of hexokinase by glucose 6-phosphate has been investigated in crude homogenates of guinea-pig cerebral cortex by using a sensitive radio-chemical technique for the assay of hexokinase activity. 2. It was observed that 44% of cerebral-cortex hexokinase activity did not sediment with the microsomal or mitochondrial fractions (particulate fraction), and this is termed soluble hexokinase. The sensitivities of soluble and particulate hexokinase, and hexokinase in crude homogenates, to the inhibitory actions of glucose 6-phosphate were measured; 50% inhibition was produced by 0.023, 0.046 and 0.068mm-glucose 6-phosphate for soluble, particulate and crude homogenates respectively. 3. The optimum Mg(2+) concentration for the enzyme was about 10mm, and this appeared to be independent of the ATP concentration. In the presence of added glucose 6-phosphate, raising the Mg(2+) concentration to 5mm increased the activity of hexokinase, but above this concentration Mg(2+) potentiated the glucose 6-phosphate inhibition. When present at a concentration above 1mm, Ca(2+) ions inhibited the enzyme in the presence or absence of glucose 6-phosphate. 4. When the ATP/Mg(2+) ratio was 1.0 or below, variations in the ATP concentration had no effect on the glucose 6-phosphate inhibition; above this value ATP inhibited hexokinase in the presence of glucose 6-phosphate. ATP had an inhibitory effect on soluble hexokinase similar to that on a whole-homogenate hexokinase, so that the ATP inhibition could not be explained by a conversion of particulate into soluble hexokinase (which is more sensitive to inhibition by glucose 6-phosphate). It is concluded that ATP potentiates glucose 6-phosphate inhibition of cerebral-cortex hexokinase, whereas the ATP-Mg(2+) complex has no effect. Inorganic phosphate and l-alpha-glycerophosphate relieved glucose 6-phosphate inhibition of hexokinase; these effects could not be explained by changes in the concentration of glucose 6-phosphate during the assay. 5. The inhibition of hexokinase by ADP appeared to be independent of the glucose 6-phosphate effect and was not relieved by inorganic phosphate. 6. The physiological significance of the ATP, inorganic phosphate and alpha-glycerophosphate effects is discussed in relation to the control of glycolysis in cerebral-cortex tissue.  相似文献   

13.
Perfusion of rat livers with 10 mM-fructose or pretreatment of the rat with 6-aminonicotinamide (70 mg/kg) 6 h before perfusion decreased intracellular ATP concentrations and increased the rate of p-nitroanisole O-demethylation. This increase was accompanied by a decrease in the free [NADP+]/[NADPH] ratio calculated from concentrations of substrates assumed to be in near-equilibrium with isocitrate dehydrogenase. After pretreatment with 6-aminonicotinamide the [NADP+]/[NADPH] ratio also declined. Reduction of NADP+ during mixed-function oxidation may be explained by inhibition of of one or more NADPH-generating enzymes. Glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase and "malic" enzyme, partially purified from livers of phenobarbital-treated rats, were inhibited by ATP and ADP. Inhibitor constants of ATP for the four dehydrogenases varied considerably, ranging from 9 micrometer for "malic" enzyme to 1.85 mM for glucose 6-phosphate dehydrogenase. NADPH-cytochrome c reductase was also inhibited by ATP (Ki 2.8 mM) and by ADP (Ki 0.9 mM), but not by AMP. Concentrations of ATP and ADP that inhibited glucose 6-phosphate dehydrogenase and the reductase were comparable with concentrations in the intact liver. Thus agents that lower intracellular ATP may accelerate rates of mixed-function oxidation by a concerted mechanism involving deinhibition of NADPH-cytochrome c reductase and one or more NADPH-generating enzymes.  相似文献   

14.
Glucose-6-phosphate dehydrogenase from sporangiophores of Phycomyces blakesleeanus NRRL 1555 (-) was partially purified. The enzyme showed a molecular weight of 85 700 as determined by gel-filtration. NADP+ protected the enzyme from inactivation. Magnesium ions did not affect the enzyme activity. Glucose-6-phosphate dehydrogenase was specific for NADP+ as coenzyme. The reaction rates were hyperbolic functions of substrate and coenzyme concentrations. The Km values for NADP+ and glucose 6-phosphate were 39.8 and 154.4 microM, respectively. The kinetic patterns, with respect to coenzyme and substrate, indicated a sequential mechanism. NADPH was a competitive inhibitor with respect to NADP+ (Ki = 45.5 microM) and a non-competitive inhibitor with respect to glucose 6-phosphate. ATP inhibited the activity of glucose-6-phosphate dehydrogenase. The inhibition was of the linear-mixed type with respect to NADP+, the dissociation constant of the enzyme-ATP complex being 2.6 mM, and the enzyme-NADP+-ATP dissociation constant 12.8 mM.  相似文献   

15.
Previous studies from this laboratory have shown that mitochondrial bound hexokinase is markedly elevated in highly glycolytic hepatoma cells (Parry, D. M., and Pedersen, P.L. (1983) J. Biol. Chem. 258, 10904-10912). A pore-forming protein, porin, within the outer membrane appears to comprise at least part of the receptor site (Nakashima, R.A., Mangan, P.S., Colombini, M., and Pedersen, P.L. (1986). Biochemistry 25, 1015-1021). In studies reported here experiments were carried out to assess the functional significance of mitochondrial bound tumor hexokinase. Two approaches were used to determine whether the bound enzyme has preferred access to mitochondrially generated ATP relative to cytosolic ATP. The first approach compared the time course of glucose 6-phosphate formation by AS-30D hepatoma mitochondria under conditions where ATP was regenerated endogenously via oxidative phosphorylation or exogenously by added pyruvate kinase and phosphoenolpyruvate. The second approach involved the measurement of the specific radioactivity of glucose 6-phosphate formed following the addition of [gamma-32P]ATP to either phosphorylating or nonphosphorylating AS-30D mitochondria. Both approaches provided results which show that the source of ATP for bound hexokinase is derived preferentially from the ATP synthase residing within the inner mitochondrial membrane compartment rather than from the medium (i.e. from the cytosolic compartment). These results provide the first direct demonstration that the exceptionally high level of hexokinase bound to mitochondria of highly glycolytic tumor cells has preferred access to mitochondrially generated ATP, a finding that may have rather profound metabolic significance for such tumors.  相似文献   

16.
Levi C  Preiss J 《Plant physiology》1976,58(6):753-756
ADP-glucose was found to be the primary sugar nucleotide used for glycogen synthesis by Synechococcus 6301. ADP-glucose pyrophosphorylase was partially purified 12-fold from this blue-green bacterium. The enzyme was activated 8- to 25-fold by glycerate 3-phosphate. Fructose 6-phosphate, fructose 1,6-bisphosphate, 5'-adenylate, and adenosine diphosphate activated the enzyme, but less than glycerate 3-phosphate. The enzyme was inhibited by inorganic phosphate. The I(0.5) of phosphate was 0.072 mm, and in the presence of 2 mm glycerate 3-phosphate, increased to 1.8 mm. The substrate saturation curves for glucose 1-phosphate and ATP were hyperbolic in both the presence and absence of glycerate 3-phosphate or phosphate. The saturation curve for MgCl(2) was sigmoidal; 2 mm glycerate 3-phosphate decreased the sigmoidicity from a Hill slope n value of 5.6 to 2.8, and increased the MgCl(2) optimum from 3 mm to 6 to 7 mm.  相似文献   

17.
One molecule of glucose 6-phosphate inhibits brain hexokinase (HKI) with high affinity by binding to either one of two sites located in distinct halves of the enzyme. In addition to potent inhibition, glucose 6-phosphate releases HKI from the outer leaflet of mitochondria; however, the site of glucose 6-phosphate association responsible for the release of HKI is unclear. The incorporation of a C-terminal polyhistidine tag on HKI facilitates the rapid purification of recombinant enzyme from Escherichia coli. The tagged construct has N-formyl methionine as its first residue and has mitochondrial association properties comparable with native brain hexokinases. Release of wild-type and mutant hexokinases from mitochondria by glucose 6-phosphate follow equilibrium models, which explain the release phenomenon as the repartitioning of ligand-bound HKI between solution and the membrane. Mutations that block the binding of glucose 6-phosphate to the C-terminal half of HKI have little or no effect on the glucose 6-phosphate release. In contrast, mutations that block glucose 6-phosphate binding to the N-terminal half require approximately 7-fold higher concentrations of glucose 6-phosphate for the release of HKI. Results here implicate a primary role for the glucose 6-phosphate binding site at the N-terminal half of HKI in the release mechanism.  相似文献   

18.
Kinetic properties of spermine synthase from bovine brain.   总被引:4,自引:0,他引:4       下载免费PDF全文
Phosphofructokinase (EC 2.7.1.11) from a citric acid-producing strain of Aspergillus niger was partially purified by the application of affinity chromatography on Blue Dextran--Sepharose and the use of fructose 6-phosphate and glycerol as stabilizers in the working buffer. The resulting preparation was still impure, but free of enzyme activities interfering with kinetic investigations. Kinetic studies showed that the enzyme exhibits high co-operativity with fructose 6-phosphate, but shows Michaelis--Menten kinetics with ATP, which inhibits at concentrations higher than those for maximal activity. Citrate and phosphoenolpyruvate inhibit the enzyme; citrate increases the substrate (fructose 6-phosphate) concentration for half-maximal velocity, [S]0.5, and the Hill coefficient, h. The inhibition by citrate is counteracted by NH4+, AMP and phosphate. Among univalent cations tested only NH4+ activates by decreasing the [S]0.5 for fructose 6-phosphate and h, but has no effect on Vmax. AMP and ADP activate at low and inhibit at high concentrations of fructose 6-phosphate, thereby decreasing the [S]0.5 for fructose 6-phosphate. Phosphate has no effect in the absence of citrate. The results indicate that phosphofructokinase from A. niger is a distinct species of this enzyme, with some properties similar to those of the yeast enzyme and in some other properties resembling the mammalian enzyme. The results of determinations of activity at substrate and effector concentrations resembling the conditions that occur in vivo support the hypothesis that the apparent insensitivity of the enzyme to citrate during the accumulation of citric acid in the fungus is due to counteraction of citrate inhibition by NH4+.  相似文献   

19.
1. Phosphofructokinase from camel liver was purified to homogeneity more than 3600-fold, and the yield of the preparation was 46%. 2.The sodium dodecyl sulphate-treated purified enzyme migrated as a single band in 10% polyacrylamide gel. 3. The enzyme is a tetramer, with a monomer Mr 90,000. 4. The regulatory properties of the purified enzyme from camel liver were studied at pH 7.0. 5. The enzyme displayed cooperativity with respect to fructose 6-phosphate and was inhibited by high concentrations of ATP. 6. The enzyme was also inhibited by citrate, phosphocreatine and 2,3-bisphosphoglycerate. 7. On the other hand, ADP, AMP, glucose 1,6-bisphosphate and fructose 2,6-bisphosphate were all found to be strong activators for camel liver phosphofructokinase.  相似文献   

20.
A specific sucrose phosphatase from plant tissues   总被引:6,自引:2,他引:4       下载免费PDF全文
1. A phosphatase that hydrolyses sucrose phosphate (phosphorylated at the 6-position of fructose) was isolated from sugar-cane stem and carrot roots. With partially purified preparations fructose 6-phosphate, glucose 6-phosphate, fructose 1-phosphate, glucose 1-phosphate and fructose 1,6-diphosphate are hydrolysed at between 0 and 2% of the rate for sucrose phosphate. 2. The activity of the enzyme is increased fourfold by the addition of Mg(2+) ions and inhibited by EDTA, fluoride, inorganic phosphate, pyrophosphate, Ca(2+) and Mn(2+) ions. Sucrose (50mm) reduces activity by 60%. 3. The enzyme exhibits maximum activity between pH6.4 and 6.7. The Michaelis constant for sucrose phosphate is between 0.13 and 0.17mm. 4. At least some of the specific phosphatase is associated with particles having the sedimentation properties of mitochondria. 5. A similar phosphatase appears to be present in several other plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号