共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
E. A. Van der Zee B. Buwalda J. H. Strubbe A. D. Strosberg P. G. M. Luiten 《Cell and tissue research》1992,269(1):99-106
Summary Immunocytochemical application of the antimuscarinic acetylcholine receptor antibody M35 to pancreas tissue revealed the target areas for the parasympathetic nervous system. Immunoreactivity in the endocrine pancreas was much higher than that in the exocrine part. Moreover, the endocrine cells at the periphery of the islets of Langerhans displayed the highest level of immunoreactivity. Based on these findings in the mantle of the islets, two types of islets have been distinguished: type-I islets with intensely stained mantle cells, and type-II islets with a much lower concentration of these cells. On average, type-I islets were larger (244.8 m±6.1 SEM) than type-II islets (121.5 m±3.8 SEM). M35-immunoreactivity was present on the majority of D cells, which were characterized by their immunoreactivity to somatostatin [of 446 D cells 356 (79.8%) were M35-immunopositive]. However, only a small proportion of the intensely stained mantle cells belonged to the D cell population. Therefore, it is concluded that the majority of the intensely stained mantle cells represent glucagon-secreting A and/or pancreatic polypeptide-secreting F cells. The intensity of M35-immunoreactivity at the periphery and central core of the islets paralleled the density of cholinergic innervation, suggesting a positive correlation between the intensity of cholinergic transmission and the number of muscarinic acetylcholine receptors at the target structures. The present study further revealed some striking parallels for the muscarinic acetylcholine receptor characteristics between the (endocrine) pancreas and the central nervous system. 相似文献
3.
The effects of phosphorylation on muscarinic acetylcholine receptors (mAChRs) were studied in vitro and in vivo using rat brain plasma membrane and receptors partially purified at least 2500-fold. Purified mAChRs were phosphorylated in vitro by cAMP-dependent protein kinase and dephosphorylated by calcineurin. Phosphorylation of purified mAChRs was enhanced by carbachol and blocked by atropine. The filtrate which passed through glass fiber filters and high speed supernates were assayed for mAChRs by an ammonium sulfate precipitation method. Following incubation of the plasma membrane under phosphorylating conditions and ultracentrifugation at 300,000 g, the mAChRs appeared in the high speed supernate. This release was stimulated by adding carbachol to the incubation medium. In rats treated with carbachol, brain mAChRs redistributed from the heavy into the light membrane fractions. Ultrastructural examination of the light membrane fractions and the 300,000 g supernatant fractions after in vivo and in vitro carbachol treatment calcineurin increased the reincorporation of added partially purified receptors into the plasma membrane. The release and reincorporation of mAChRs strongly imply that there is a translocation and recycling of mAChRs between plasma membrane and cytosol in vivo. The significance and the function of the translocation of mAChRs remain to be investigated. 相似文献
4.
Changes in content of selected neuroactive amino acids [glutamic acid, aspartic acid, glycine, gamma-aminobutyric acid (GABA) and taurine] and acetylcholine (ACh) in the rat hippocampus following transient forebrain ischemia were investigated using male Wistar rats. Rats were allowed to survive for 1 or 5 days following 10 or 20 min of 4-vessel occlusion, and killed by a focused microwave irradiation. A significant reduction in all neuroactive amino acids examined except GABA was noted in the hippocampus on the fifth day. One day after the 4-vessel occlusion for 10 min, no significant effect on the content of neuroactive amino acids in all brain areas was observed. gamma-Aminobutyric acid content in the hippocampus was only significantly reduced on the fifth day after the occlusion for 20 min. Similarly, a significant decrease in ACh content in the hippocampus was observed on the fifth day after the occlusion for 20 min. Considering the data that a significant loss of neuronal cells in the hippocampus (delayed neuronal death) was detected only 5 days after the 4-vessel occlusion, it can be said that the alterations in the hippocampus of neuroactive amino acids such as glutamic acid, aspartic acid, glycine and taurine are more sensitive than those in GABA and ACh against cerebral ischemia. A possible correlation of these changes of neuroactive amino acids in the occurrence of delayed neuronal death in the hippocampus is also suggested. 相似文献
5.
The recently-determined structure of rhodopsin has provided a suitable basis for modeling the three-dimensional structure of the M1 muscarinic acetylcholine receptor. Using this as a framework for interpreting mutagenesis studies, we have been able to suggest most of the contacts which the receptor makes with acetylcholine and many of the intramolecular contacts which are important for the ground-state structure of the receptor. It is possible to outline a mechanism of G-protein interaction. 相似文献
6.
7.
Chronic administration of diisopropylflourophosphate (DFP) to mice induced decrease in maximal contraction and increase in the ED50 of ileum to the muscarinic agonist oxotremorine. These changes were accompanied by decrease in muscarinic receptors. Papaverine prevented both the changes in contraction and the decrease in muscarinic receptors by DFP. The quantitative relationship between the decrease in receptors and contraction is discussed on the basis of the hypothesis of spare receptors. 相似文献
8.
9.
Based on the kinetics of interaction between a receptor and G-protein, a myriad of possibilities may result. Two extreme cases are represented by: 1/Collision coupling, where an agonist binds to the free receptor and then the agonist-receptor complex "collides" with the free G-protein. 2/Pre-coupling, where stable receptor/G-protein complexes exist in the absence of agonist. Pre-coupling plays an important role in the kinetics of signal transduction. Odd-numbered muscarinic acetylcholine receptors preferentially couple to G(q/11), while even-numbered receptors prefer coupling to G(i/o). We analyzed the coupling status of the various subtypes of muscarinic receptors with preferential and non-preferential G-proteins. The magnitude of receptor-G-protein coupling was determined by the proportion of receptors existing in the agonist high-affinity binding conformation. Antibodies directed against the C-terminus of the α-subunits of the individual G-proteins were used to interfere with receptor-G-protein coupling. Effects of mutations and expression level on receptor-G-protein coupling were also investigated. Tested agonists displayed biphasic competition curves with the antagonist [(3)H]-N-methylscopolamine. Antibodies directed against the C-terminus of the α-subunits of the preferential G-protein decreased the proportion of high-affinity sites, and mutations at the receptor-G-protein interface abolished agonist high-affinity binding. In contrast, mutations that prevent receptor activation had no effect. Expression level of preferential G-proteins had no effect on pre-coupling to non-preferential G-proteins. Our data show that all subtypes of muscarinic receptors pre-couple with their preferential classes of G-proteins, but only M(1) and M(3) receptors also pre-couple with non-preferential G(i/o) G-proteins. Pre-coupling is not dependent on agonist efficacy nor on receptor activation. The ultimate mode of coupling is therefore dictated by a combination of the receptor subtype and the class of G-protein. 相似文献
10.
Daniel M. Michaelson Amos D. Korczyn Mordechai Sokolovsky 《Biochemical and biophysical research communications》1982,104(1):52-57
IgG obtained from patients with myasthenia gravis block the specific binding of the muscarinic antagonists (3H)-N-methyl-4-piperidyl benzilate (4NMPB) and (3H)-Quinuclidinyl benzilate to rat brain muscarinic acetylcholine receptors. IgG obtained from healthy controls have a much smaller effect. The inhibitory effect of the myasthenic IgG increases linearly with immunoglobulin concentration and has no effect on the affinity of the muscarinic receptors towards (3H)-4NMPB (KD = 0.7 ± 0.1 nM). This implies that the inhibition is probably due to the blocking of some of the muscarinic receptors by the myasthenic IgG, and not due to alteration in affinity of all the receptors. it remains to be established whether the presence of antimuscarinic receptor activity in the serum of myasthenic patients is of importance in the pathophysiology and diagnosis of myasthenia gravis. 相似文献
11.
12.
Kunio Takeyasu Shuji Uchida Yutaka Noguchi Norihisa Fujita Kihachi Saito Fumiaki Hata Hiroshi Yoshida 《Life sciences》1979,25(7):585-592
Chronic blockade of cholinergic transmission with atropine resulted in a decrease in atropine-induced activity in the rats, whereas apomorphine - induced locomotion was enhanced. Maximal binding of 3H-quinuclidinyl benzilate (QNB), a muscarinic antagonist, to homogenate of cerebral cortex, striatum and hippocampus was significantly higher in chronic atropine-treated rats than in control animals. No difference was observed in KD value of the specific 3H-QNB binding or in ID50 value of oxotremorine in inhibiting 3H-QNB binding. No change in the specific binding of 3H-spiroperidol, a dopaminergic antagonist, was observed in those three regions of brains of chronic atropine-treated rats when it was compared with that of control animals. The role of brain muscarinic acetylcholine receptors in behavioral responses is discussed relating an effect of dopaminergic neurons on cholinergic activities. 相似文献
13.
Enhancement of DNA synthesis in rat thymocytes by stimulating their muscarinic acetylcholine receptors. 总被引:2,自引:0,他引:2
K Tominaga F Hato Y Kinoshita M Tominaga M Yamada 《Cellular and molecular biology, including cyto-enzymology》1992,38(8):815-822
The binding of 3H-acetylcholine (ACh) to acetylcholine receptors (AChRs) on rat thymocytes was examined and found to be inhibited by the treatment with several antagonists against nicotinic and muscarinic AChRs. This result suggested that thymocytes have AChRs with different affinity, and bear both nicotinic and muscarinic AChRs on their surfaces. To make clear the functional significance of the AChRs, DNA synthesis of the thymocytes stimulated with ACh was examined. 3H-thymidine uptake of thymocytes was significantly increased when the cells were stimulated with ACh or another cholinergic agonist. The increment of DNA synthesis caused by ACh in thymocytes was not reduced by treatment with nicotinic antagonists, but was decreased by treatment with any of the muscarinic antagonists. Concentration of the intracellular second messengers, inositol 1,4,5-triphosphate (IP3) and guanosine 3',5'-cyclic monophosphate (cGMP) was also made higher by ACh stimulation. It is discussed that the enhancement of intracellular IP3 and cGMP concentrations after stimulation of muscarinic AChRs appears to be related with the increment of thymocyte DNA synthesis. 相似文献
14.
Direct and energy-transfer photolabelling of brain muscarinic acetylcholine receptors 总被引:1,自引:0,他引:1
Efficient photolabelling of muscarinic acetylcholine receptors was obtained using either two aryldiazonium salts or an azido derivative. These probes did not discriminate between muscarinic binding subtypes or affinity states and became irreversibly bound to the receptor sites, in an entirely atropine-protectable manner, upon ultraviolet irradiation. The extent of labelling was dependent both on probe concentration and on time of irradiation and reached up to 80% of the receptor population, under optimal alkylating conditions. In contrast to the azido derivative, both diazonium salts behave as potent irreversible labels of muscarinic receptors, provided energy-transfer photolabelling conditions were followed. Such an indirect activation of diazonium ligands, through an energy transfer from photoexcited tryptophan residues, has been previously found to increase the site-specificity and the rate of labelling of other acetylcholine binding proteins. Analogies in the photolabelling process of acetylcholinesterase or of nicotinic and muscarinic receptors by the two diazonium salts are discussed. Altogether, these findings suggest that these new probes may be promising tools to investigate the location and the topography of the agonist-antagonist binding domain on purified muscarinic receptors, through amino acid and/or sequence analyses of radioactive, photolabelled residues. 相似文献
15.
Alterations in acetylcholine release in the rat hippocampus during sleep-wakefulness detected by intracerebral dialysis 总被引:1,自引:0,他引:1
Acetylcholine (ACh) release from the dorsal hippocampus was continuously monitored in freely moving rats during a light period using an intracerebral dialysis technique. A dialysate was collected every 6 min and polygraph recordings including cortical and hippocampal electroencephalograms, electromyogram, and electrooculogram were simultaneously made to determine the stage of sleep-wakefulness. The content of ACh was measured by high-performance liquid chromatography with electrochemical detection. ACh output showed profound and state-dependent fluctuations. ACh levels during waking increased approximately 300% compared to slow wave sleep. In contrast, the rate of ACh release during paradoxical sleep was as high as during waking and appeared to be even higher. These results revealed that the intracerebral dialysis technique provides a useful method to monitor changes in spontaneous neurotransmitter release during the sleep-waking cycle. 相似文献
16.
Mario Marchi Annamaria Caviglia Paolo Paudice Maurizio Raiteri 《Neurochemical research》1983,8(5):621-628
A number of presynaptic cholinergic parameters (high affinity [3H]choline uptake, [3H]acetylcholine synthesis, [3H]acetylcholine release, and autoinhibition of [3H]acetylcholine release mediated by muscarinic autoreceptors) were comparatively analyzed in rat brain cortex synaptosomes during postnatal development. These various functions showed a differential time course during development. At 10 days of age the release of [3H]acetylcholine evoked by 15 mM KCl from superfused synaptosomes was Ca2+-dependent but insensitive to the inhibitory action of extrasynaptosomal acetylcholine. The muscarinic autoreceptors regulating acetylcholine release were clearly detectable only at 14 days, indicating that their appearance may represent a criterion of synaptic maturation more valuable than the onset of a Ca2+-dependent release. 相似文献
17.
Zarghooni S Wunsch J Bodenbenner M Brüggmann D Grando SA Schwantes U Wess J Kummer W Lips KS 《Life sciences》2007,80(24-25):2308-2313
Acetylcholine (ACh) and its receptors play a crucial role in bladder physiology. Here, we investigated the presence of muscarinic receptor subtypes (MR) and nicotinic acetylcholine receptor (nAChR) alpha-subunits in the mouse urothelium by RT-PCR and immunohistochemistry. With RT-PCR, we detected mRNAs coding for all of the five different MR subtypes and for the nicotinic receptor subunits alpha2, alpha4, alpha5, alpha6, alpha7, alpha9 and alpha10, whereas the alpha3-subunit was not expressed. Using immunohistochemistry, we localised a panel of acetylcholine receptors in the different layers of the murine bladder urothelium, with predominant appearance in the basal plasma membrane of the basal cell layer and in the apical membrane of the umbrella cells. M2R and subunit alpha9 were observed exclusively in the umbrella cells, whereas the MR subtypes 3-5 and the nAChR subunits alpha4, alpha7 and alpha10 were also detected in the intermediate and basal cell layers. The subunit alpha5 was localised only in the basal cell layer. In conclusion, the murine urothelium expresses multiple cholinergic receptors, including several subtypes of both MR and nAChR, which are differentially distributed among the urothelial cell types. Since these receptors have different electrophysiological and pharmacological properties, and therefore are considered to be responsible for different cellular responses to ACh, this differential distribution is expected to confer cell type-specificity of cholinergic regulation in the bladder urothelium. 相似文献
18.
Prejunctional pA2 values of five muscarinic antagonists were determined in the guinea-pig trachea under stimulation conditions in which the antagonists alone did not enhance acetylcholine release. The antagonists were partly selective at M1 (pirenzepine), M2 (AQ-RA 741, himbacine) and M3 receptors (hexahydrosiladifenidol, dicyclomine). The profile of the antagonist affinities was different from that obtained at cardiac M2 receptors but resembled the profile reported in the literature for the cloned m4 receptor. This suggests that autoinhibition of acetylcholine release in the trachea is mediated via M4 receptors. 相似文献
19.
《The Journal of cell biology》1981,91(3):781-789
Electrolyte and fluid secretion by the avian salt gland is regulated by activation of muscarinic acetylcholine receptors (R). In this study, these receptors were characterized and quantitated in homogenates of salt gland from domestic ducks adapted to conditions of low (freshwater, FW) and high (saltwater, SW) salt stress using the cholinergic antagonist [3H]-quinuclidinyl benzilate (QNB). Specific binding of the antagonist to receptors in both FW- and SW-adapted glands reveals a single population of high affinity binding sites (KdFW = 40.1 +/- 3.0 pM; KdSW = 35.1 +/- 2.1 pM). Binding is saturable; RLmaxFW = 1.73 +/- 0.10 fmol/micrograms DNA; RLmaxSW = 4.16 +/- 0.31 fmol/micrograms DNA (where L is [3H]QNB and RL the high affinity complex). Calculated average cellular receptor populations of 5,800 sites/cell in FW-adapted glands and 14,100 sites/cell in SW-adapted glands demonstrate that upward regulation of acetylcholine receptors in the secretory epithelium follows chronic salt stress. The receptor exhibits typical pharmacological specificities for muscarinic cholinergic antagonists (QNB, atropine, scopolamine) and agonists (oxotremorine, methacholine, carbachol). In addition, the loop diuretic furosemide, which interferes with ion transport processes in the salt gland, competitively inhibits [3H]QNB binding. Preliminary studies of furosemide effects on [3H]QNB binding to rat exorbital lacrimal gland membranes showed a similar inhibition, although the diuretic had no effect on antagonist binding to rat brain or atrial receptors. 相似文献
20.
The effect of galanin, a peptide present in a subpopulation of histaminergic neurons emanating from the rat posterior hypothalamus, was investigated on K(+)-evoked [3H]histamine release in slices and synaptosomes from rat cerebral cortex, striatum, hippocampus and hypothalamus. Porcine galanin (0.3 microM) significantly inhibited histamine release induced by 25 mM K+ in slices from hypothalamus and hippocampus, but not from cerebral cortex and striatum, i.e., only in regions in which a colocalization of histamine and galanin has been described. The inhibitory effect of galanin was concentration dependent, with an EC50 value of 5.8 +/- 1.9 nM. The maximal inhibition was of 30-40% in hypothalamic and hippocampal slices depolarized with 25 mM K+. The galanin-induced inhibition observed in hypothalamic slices was not prevented in the presence of 0.6 microM tetrodotoxin and also occurred in hippocampal and hypothalamic synaptosomes, strongly suggesting the activation by galanin of presynaptic receptors located upon histaminergic nerve endings. The maximal inhibitory effect of galanin in slices or synaptosomes was lower than that previously reported for histamine acting at H3-autoreceptors, possibly suggesting that not all histaminergic axon terminals, even in the hypothalamus and hippocampus, are endowed with galanin receptors. It increased progressively in hypothalamic and hippocampal synaptosomes as the strength of the depolarizing stimulus was reduced. It is concluded that galanin modulates histamine release via presynaptic receptors, presumably autoreceptors located upon nerve terminals of a subpopulation of cerebral histaminergic neurons. 相似文献