首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electron microscopy study was made of synaptic organization in the cat association cortex, area 5b. A total of 1635 axonal terminals were discovered over 6215 µm2 (240 electronic imagings of slices of different association cortex layers); i.e., an average of 263±16 terminals per 1000 µm2 expanse. It was found that 75.5% of axon terminals contained synaptic vesicles and formed either one- or two-sided contact with postsynaptic structures; 24.5% of axonal terminals contained synaptic vesicles but formed no distinct synaptic contacts with nearby neurons; 84.9% of terminals contained round-shaped or slightly oval synaptic vesicles; 7.8% had both rounded and elongated shapes, and vesicles were very elongated in the remaining 7.3%. Of the axonal terminals having synaptic contacts, axo(dendritic)-spinal terminals accounted for 46.6%, and axodendritic and axosomatic endings amounted to 50.0% and 3.4% respectively (in all 77% of axosomatic terminals contained elongated vesicles and maintained symmetrical contact, while 23% had round-shaped vesicles and formed asymmetrical contact). Calculations show that for each 1 mm3 an average of 258 million axonal terminals are found forming synaptic contacts in the cat association cortex as well as 84 million terminals containing synaptic vesicles but not forming contact.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 174–185, March–April, 1989.  相似文献   

2.
Unanesthetized cats were immobilized with D-tubocurarine. Single unit responses in area 5b of the suprasylvian gyrus to stimulation of the ventral posterolateral thalamic nucleus were recorded extracellularly. Of the total number of neurons tested, 32% were excited and 3% inhibited. In 65% of neurons the responses were mixed, most of them being predominantly excitatory. Repetitive stimulation of the ventral posterolateral nucleus (6–9/sec) frequently intensified the excitatory component of the responses. Sometimes inhibition, present in the response to a single stimulus, was replaced by increased excitation. However, the same response as to a single stimulus frequently appeared in response to each consecutive stimulus of a series. Stimulation of the ventral posterolateral nucleus had a mainly excitatory effect on neurons in area 5b. Stimulation of the dorsal lateral nucleus, on the other hand, inhibited their activity. This antagonism could also be observed on the same neuron. It was concluded from the short latent periods of the orthodromic responses (3–6 msec) and from the antidromic responses of the cortical neurons to stimulation of the ventral posterolateral nucleus that this nucleus has direct two-way connections with the cortex of area 5b.  相似文献   

3.
Electron microscope research was conducted on the synaptic apparatus of the feline primary auditory cortex (Al). A total of 2096 profiles of axonal terminals (AT) were found over a total area of 8230 µm2 of ultrathin slices at different layers of this cortical layer — an average of 255 profiles per 1000 µm2 of the surface area on these slices. The AT profiles occupied about 8.9% of the surface of these cross-sections. It was found that 52% of the AT containing synaptic vesicles formed asymmetrical or symmetrical synaptic contacts (83.9% and 16.1% respectively) and that AT had no contacts which could be considered synaptic junctions on 48% of slices. It was also observed that 45.3% of the AT forming contacts synapsed on spines, 48.5% on dendrites, and 6.2% on neuronal somata. Finally, 95.4% and 4.6% of axo-spinal synapses contained rounded and flattened vesicles respectively; equivalent figures for axodendritic synapses were 79.4% and 20.6% respectively and 19.8 and 80.2% for axosomatic synapses. Calculations revealed an average of 322.8 × 106 AT over 1 mm3 of cat auditory cortex. Organizational aspects of synaptic apparatus at different layers of area A1 were ascertained.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 533–543, July–August, 1990.  相似文献   

4.
5.
The distribution of GABA-ergic structures in the intact and neuronally isolated cat cerebral cortex in area 5 was studied by the histochemical reaction for GABA-transaminase 2 and 3 weeks after isolation. The overwhelming majority of GABA-ergic fibers of the neuropil and of synaptic terminals was shown to be formed by axons of a few GABA-ergic interneurons, and only a small proportion of them belong to afferent axons of extracortical origin. GABA-ergic interneurons were subdivided into short-axonal, forming connections within an isolated area, and long-axonal, forming horizontal connections with more distant cortical neurons. GABA-ergic axons give numerous projections to bodies and proximal segments of dendrites of many pyramidal neurons not containing GABA-transaminase, and of stellate neurons, which include cells with GABA-ergic and non-GABA-ergic mediator nature. It is suggested that the influence of some GABA-ergic neurons on others is responsible for intracortical spatial regulation of inhibition.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 365–371, May–June, 1985.  相似文献   

6.
7.
8.
Responses in 160 neurons of the cat parietal cortex were investigated during the performance of instrumental food reflex (lever pressing) during experiments involving presentation of a conditioned acoustic stimulus. Discharge rate changed in 49% of neurons during the period preceding the conditioned reflex movement. Three basic types of cell with an excitatory response pattern were discovered apart from a small group showing suppression of activity, each differently involved in the process of conditioned reflex movement performance. Excitation arose in neurons of the first type 200±52.9 msec (average) before the onset of the conditioned reflex movement, reaching its peak discharge rate as the animal placed its paw on the lever. The former parameter was 605±54.2 msec for the second type of neuron, with firing rate peaking between the start of electromyographic response and the completion of lever pressing. The same parameter measured 1,000–2,000 msec in the third type and activation took the form of a diffuse increase in discharge rate without a clear-cut peak occurring during performance of the instrumental reflex. Findings would suggest the involvement of the parietal cortex neuronal system in the triggering as well as the follow-through of conditioned reflex motion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 223–231, March–April, 1987.  相似文献   

9.
Spike response was investigated in 156 units of the thalamic reticular nucleus (RN) during performance of the instrumental feeding reflex of lever-pressing. This response consisted of lead and lag phases. Latency of the lead phase of response varied between 10 and 100 msec and total duration of response between 50 and 250 msec; minimum latency of the lag phase: 100–300 msec. Initial response to a conditioning clicking sound was found in 27 units, of which 26 showed excitation and the remaining single unit an inhibitory-excitatory pattern. The lag stage of response associated with performance of conditioned lever-pressing was found in 134 neurons, of which 115 showed an excitatory pattern, 19 displayed inhibition and the remaining 22 units failed to respond. The lag phase of response preceded the onset of conditioned reflex movement (CRM) in 30 neurons. A total of 118 neurons responded between the onset of CRM and the point of lever-pressing. It was concluded that the RN plays a part in perception of the conditioned signal as well as producing and controlling performance of CRM.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 1, pp. 8–18, January–February, 1991.  相似文献   

10.
Cats were immobilized with D-tubocurarine. Responses of 231 neurons of the thalamic nucleus lateralis posterior to cortical stimulation in areas 5b and 21 of the suprasylvian gyrus were studied. Responses of 34 neurons were antidromic, indicating the existence of a direct projection of this nucleus to the cortical areas studied. This projection was most extensive in area 5b. The long latencies (up to 60 msec) of the antidromic responses of some neurons indicate that axons of certain neurons of thalamic nucleus lateralis posterior conduct excitation very slowly (0.3 m/sec). Orthodromic responses with latencies of 2–3 msec to cortical stimulation point to the presence of direct pathways from cortex to nucleus. The flow of afferent impulses into the nucleus from area 5b is stronger than from area 21. Convergence of impulses from these areas was observed on 44% of neurons of the nucleus. Cortical stimulation of areas 5b and 21 evoked postsynaptic inhibition in most neurons of the nucleus. It is concluded that two-way direct connections exist between nucleus lateralis posterior of the thalamus and the suprasylvian cortex.  相似文献   

11.
Characteristics of focal potentials and single unit responses of the dorsomedial nucleus of the thalamus to electrical stimulation of the anterior periamygdalar cortex (APC) and area amygdaloidea anterior (AAA) were compared in acute experiments on rats. Differences were found in the parameters, dynamics, and duration of the recovery cycle of focal potentials in response to stimulation of APC and AAA. Stimulation of APC and AAA was accompanied by changes in the discharges of 26.9 and 19.2% of neurons studied respectively. Four types of unit responses are described: activating (64.3% of responding cells), biphasic activating (14.3%), inhibitory or inhibitory-activating (14.3%), and complex (7.1%). Spontaneous activity was exhibited by 25% of reacting cells. Stimulation of APC was shown to give rise to both shortlatency (12–18 msec) and long-latency (23–66 msec) phasic activating responses of the neurons whereas the latent periods of the analogous responses to stimulation of AAA exceeded 20 msec (from 21 to 136 msec). Unit responses of the second type consisted of a principal phasic response of three or four spikes with mean latent periods of 9–19.1 msec, preceded by a single short-latency (2.9–4.1 msec) spike. Responses of the first two types were characteristic of 92.9 and 64.3% of neurons responding to stimulation of APC and AAA respectively.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 604–611, November–December, 1981.  相似文献   

12.
Area 5 of the cat cortex was studied by Nissl's method and by Golgi's chromate-silver impregnation method. Its typical six-layered structure with well-developed layers of pyramidal cells was revealed. The characteristic features of area 5 are: predominance of pyramidal cells in layers II–III and the presence of large forms (40×26 µ) among them (in layer III); giant pyramidal neurons (70×23 µ) arranged singly or nidally in layer V; large (diameter 25–30 µ) and giant (diameter 40–45 µ) stellate cells with radial dendrites, arranged singly or in groups in layers V–VI; infrequent efferent fusiform neurons (40×20 µ) in layers V–VI. Stellate cells connecting pyramidal neurons in the same or in different layers were found in layers II–VI. Some stellate cells in layers II–III form long horizontal connections within area 5. Interneuronal connections are effected by axosomatic and axodendritic terminals, the latter being more numerous; Dendrodendritic and axoaxonal synapses are less common.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 1, pp. 35–42, January–February, 1979.  相似文献   

13.
14.
15.
Afferent connections of the retrosplenial area of the rat limbic cortex were investigated by the retrograde horseradish peroxidase axon transport method. After injection of horseradish peroxidase (HRP) into area 29 of the cortex, HRP-labeled cells were found in the dorsal part of the lateral geniculate body and the posterolateral, pretectal, and anterior dorsal thalamic nuclei. Connections were found between cortical area 29 and visual projection areas (areas 17 and 18a) and with area 29 on the contralateral side of the brain. The results are evidence that all the principal visual structures of the thalamus and the visual cortical projection area form direct projections to the retrosplenial cortex.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 135–139, March–April, 1982.  相似文献   

16.
17.
Representation of the visual field was investigated in the feline posterior suprasylvian area (PSA) using electrophysiological mapping techniques. The PSA is one of the extrastriatal visual structures of the cerebral cortex. The PSA retinotopic organization pattern was also studied. Neuronal receptive fields (RF) were mainly located in the upper contralateral quadrant and just a small number in the lower contralateral quadrant of the visual field. Approximately 10% of RF were located in the upper ipsilateral quadrant. The central area of the visual field extending in a radius of 20–30° from the area centralis was mainly represented in the upper section of the PSA (areas 21a and 21b). The RP of neurons located more peripherally to the area centralis are found in the lower portion of the PSA (areas 20a and 20b); these occupy a correspondingly greater area. Experimental finding did not confirm any substantial differences in the retinotopic organization of areas 21a, 21b, 20a, and 20b comprising the PSA. Data obtained would tend to indicate that the PSA consists of two areas, 21a and 21b, which do not appear to be subdivided, with more densely distributed visual neurons in the former than in the latter.Institute of Experimental Biology of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 23, No. 3, pp. 290–296, May–June, 1991.  相似文献   

18.
The pattern of change produced in somatosensory evoked potential (EP) in the forelimb projection area within the motor cortex (MI) following lesion of the projection area of the same limb in the somatosensory cortex (SI) or in parietal cortex area 5 was investigated during chronic experiments on waking dogs. Amplitude of the initial positive — negative wave of EP declined to 28–63% of preoperational level in all cases. No significant recovery of EP was noted for three weeks. Thus, a correlation between change in EP and spontaneous recuperation of the precision motor response occurring within two weeks after lesion of the SI did not exist. Nor was EP reinstated in the MI after ablation of area 5, despite complete but gradual reinstatement of EP (after an initial decline to 53%) in the nearby SI region. This protracted depression of EP seems to have been associated with breakdown of somatotopic sensory input from the SI or from area 5 to the MI, since EP in the motor cortex of the intact hemisphere and the hindlimb projection area within the MI on the lesioned side either remained unchanged or recovered within a week or two.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 61–68, January–February, 1990.  相似文献   

19.
Thalamic neuronal projections to the parietal association cortex were investigated in cats applying techniques of retrograde axonal transport of two fluorescent dyes (primuline and fast blue). The dorsal thalamic pulvinar (PL) as well as the dorsal and caudal lateral posterior nucleus (LP) were found to project mainly to the central suprasylvian gyrus (CSSG), while the ventral PL and the ventrorostral LP send out projections to rostral sites of the same gyrus (RSSG). Neurons with dual labeling were found in the PL, LP, suprageniculate, anteroventral, and ventrolateral thalamic nuclei following a single injection of two different markers into the RSSG and CSSG, as well as the centrolateral, paracentral, and centromedial nuclei. Topical organization of sources of cortical projections within the PL-LP complex can apparently provide a high level of discrimination of visual signals by individual cortical units. At the same time, the RSSG and CSSG appear to function in harmony to a considerable extent during integration of information of differing cortical origin; this could point to a lack of differentiation on the part of the RSSG and CSSG, corresponding to feline cortical areas 5 and 7 approximately.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 2, pp. 135–142, March–April, 1991.  相似文献   

20.
Li Y  Yuan B  Tang JS 《生理学报》2007,59(6):777-783
本文旨在研究丘脑中央下核(thalamic nucleus submedius,Sm)是否参与持续伤害感受性调制。以自动运动检测系统记录大鼠一侧后爪皮下注射福尔马林诱发的伤害性行为(烦乱反应)为指标,观察电刺激和电解损毁Sm对烦乱反应的效应。结果显示,电刺激(100μA,5min)同侧或对侧Sm明显抑制福尔马林诱发的第二时相的烦乱反应,而刺激Sm外邻近结构(超过0.5mm)对烦乱反应无明显效应。电解损毁双侧Sm对第一或第二时相的烦乱反应均无影响。结果提示,Sm不仅参与急性时相性伤害感受性调制,也参与持续性伤害感受性调制。本研究为Sm参与下行痛调制提供了新的证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号