首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The cyclic photosynthetic chain of Rhodobacter capsulatus has been reconstituted incorporating into phospholipid liposomes containing ubiquinone-10 two multiprotein complexes: the reaction center and the ubiquinol-cytochrome-c2 reductase (or bc1 complex). 2. In the presence of cytochrome c2 added externally, at concentrations in the range 10-10(4) nM, a flash-induced cyclic electron transfer can be observed. In the presence of antimycin, an inhibitor of the quinone-reducing site of the bc1 complex, the reduction of cytochrome b561 is a consequence of the donation of electrons to the photo-oxidized reaction center. At low ionic strength (10 mM KCl) and at concentrations of cytochrome c2 lower than 1 microM, the rate of this reaction is limited by the concentration of cytochrome c2. At higher concentrations the reduction rate of cytochrome b561 is controlled by the concentration of quinol in the membrane, and, therefore, is increased when the ubiquinone pool is progressively reduced. At saturating concentrations of cytochrome c2 and optimal redox poise, the half-time for cytochrome b561 reduction is about 3 ms. 3. At high ionic stength (200 mM KCl), tenfold higher concentrations of cytochrome c2 are required for promoting equivalent rates of cytochrome-b561 reduction. If the absolute values of these rates are compared with those of the cytochrome-c2-reaction-center electron transfer, it can be concluded that the reaction of oxidized cytochrome c2 with the bc1 complex is rate-limiting and involves electrstatic interactions. 4. A significant rate of intercomplex electron transfer can be observed also in the absence of cytochrome c2; in this case the electron donor to the recation center is the cytochrome c1 of the oxidoreductase complex. The oxidation of cytochrome c1 triggers a normal electron transfer within the bc1 complex. The intercomplex reaction follows second-order kinetics and is slowed at high ionic strength, suggesting a collisional interaction facilitated by electrostatic attraction. From the second-order rate constant of this process, a minimal bidimensional diffusion coefficient for the complexes in the membrane equal to 3 X 10(-11) cm2 s-1 can be evaluated.  相似文献   

2.
The oxidation-reduction properties of free cytochrome b2 isolated by controlled proteolysis from flavocytochrome b2, i.e. the flavodehydrogenase-bound cytochrome b2, were investigated by using stopped-flow spectrophotometry. The rapid kinetics of the reduction of cytochrome b2 by flavocytochrome b2 in the presence of L-lactate are reported. The self-exchange rate constant between reduced cytochrome b2 bound to the flavodehydrogenase and free cytochrome b2 was determined to be 10(5) M-1 X S-1 at 5 degrees C, I 0.2 and pH 7.0. The specific electron-transfer reaction between reduced cytochrome b2 and cytochrome c was also studied, giving an apparent second-order rate constant of 10(7) M-1 X S-1 at 5 degrees C, I 0.2 and pH 7.0. This electron-exchange rate is slightly modulated by ionic strength, following the Debye-Hückel relationship with a charge factor Z1Z2 = -1.9. Comparison of these data with those for the reduction of cytochrome c by flavodehydrogenase-bound cytochrome b2 [Capeillère-Blandin (1982) Eur. J. Biochem. 128, 533-542] leads to the conclusion that the intramolecular electron exchange between haem b2 and haem c within the reaction complex occurs at a rate very similar to that determined experimentally in presence of the flavodehydrogenase domain. The low reaction rate observed with free cytochrome b2 is ascribed to the low stability of the reaction complex formed between free cytochrome b2 and cytochrome c.  相似文献   

3.
22 revertants of Saccharomyces cerevisiae with intragenic suppressors (supa) of cob exon mutations (G. Burger, Mol. Gen. Genet., in the press) were analyzed. They display either a reduced amount of cytochrome b, or a shifted maximum absorption wavelength of total cytochrome b or a reduced growth rate on glycerol. The relationship of physico-chemical properties (content, light absorption and midpoint potential of cytochromes bK and bT) and functional properties (electron transport and energy yield) has been examined. In seven of eight revertants with a shifted maximum absorption wavelength of cytochrome b neither growth rate nor electron transfer activity was affected. In 13 of 14 revertants, reduced content of cytochrome b corresponds to a reduced electron transport rate through the cytochrome bc1 segment. A lower enzymatic activity, which is not due to a quantitative but to a qualitative alteration of cytochrome b was found in two revertants. Two revertants show electron transport rates of wild-type level concomitant with a reduced growth rate on glycerol, obviously due to a less efficient energy coupling. All revertants were shown to contain a high and a low potential cytochrome b, referred to as bK and bT. Those cob-/supa mutations which shift the maximum absorption wavelength or diminish the content of cytochrome b affect both b cytochromes in all cases. The results support that electron transport and energy conservation are catalyzed by the unity of cytochrome bK and bT and that both heme centers are bound to an identical apoenzyme. Comparing electron flow rates of succinate:cytochrome c oxidoreductase and NADH:cytochrome c oxidoreductase in cob- mutants and two revertants provides evidence that ubiquinone does not constitute a homogeneous pool, suggested by the dissimilar interaction of both dehydrogenases with the bc1 segment.  相似文献   

4.
The de novo design and synthesis of ruthenium-labeled cytochrome b5 that is optimized for the measurement of intracomplex electron transfer to cytochrome c are described. A single cysteine was substituted for Thr-65 of rat liver cytochrome b5 by recombinant DNA techniques [Stayton, P. S., Fisher, M. T., & Sligar, S. G. (1988) J. Biol. Chem. 263, 13544-13548]. The single sulfhydryl group on T65C cytochrome b5 was then labeled with [4-(bromomethyl)-4'-methylbipyridine] (bisbipyridine)ruthenium2+ to form Ru-65-cyt b5. The ruthenium group at Cys-65 is only 12 A from the heme group of cytochrome b5 but is not located at the binding site for cytochrome c. Laser excitation of the complex between Ru-65-cyt b5 and cytochrome c results in electron transfer from the excited state Ru(II*) to the heme group of Ru-65-cyt b5 with a rate constant greater than 10(6) s-1. Subsequent electron transfer from the heme group of Ru-65-cyt b5 to the heme group of cytochrome c is biphasic, with a fast-phase rate constant of (4 +/- 1) x 10(5) s-1 and a slow-phase rate constant of (3 +/- 1) x 10(4) s-1. This suggests that the complex can assume two different conformations with different electron-transfer properties. The reaction becomes monophasic and the rate constant decreases as the ionic strength is increased, indicating dissociation of the complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Rate constants for reduction of cytochrome b561 by internal ascorbate (k0A) and oxidation by external ferricyanide (k1F) were determined as a function of pH from rates of steady-state electron transfer across chromaffin-vesicle membranes. The pH dependence of electron transfer from cytochrome b561 to ferricyanide (k1F) may be attributed to the pH dependence of the membrane surface potential. The rate constant for reduction by internal ascorbate (k0A), like the previously measured rate constant for reduction by external ascorbate (k-1A), is not very pH-dependent and is not consistent with reduction of cytochrome b561 by the ascorbate dianion. The rate at which ascorbate reduces cytochrome b561 is orders of magnitude faster than the rate at which it reduces cytochrome c, despite the fact that midpoint reduction potentials favor reduction of cytochrome c. Moreover, the rate constant for oxidation of cytochrome b561 by ferricyanide (k1F) is smaller than the previously measured rate constant for oxidation by semidehydroascorbate, despite the fact that ferricyanide has a higher midpoint reduction potential. These results may be reconciled by a mechanism in which electron transfer between cytochrome b561 and ascorbate/semidehydroascorbate is accelerated by concerted transfer of a proton. This may be a general property of biologically significant electron transfer reactions of ascorbic acid.  相似文献   

6.
This study is part of a series aimed at the characterization of individual steps of electron transfer taking place between prosthetic flavin, heme b2, heme c within active sites and complexes. After rapid mixing of ferricytochrome c with partially reduced flavocytochrome b2, the reaction is followed at the level of two reactants, cytochrome b2 and cytochrome c. In order to define the proper reactivity of flavosemiquinone, conditions under which this form is highly stabilized (presence of pyruvate) have been chosen. With the help of simulations, it has been possible to characterize a rapid step of electron transfer from cytochrome b2 to cytochrome c within a complex (at approx. 70% saturation) and a slow step k = 5 s-1 assigned to cytochrome b2 reduction by flavosemiquinone within the active site of the pyruvate-liganded enzyme.  相似文献   

7.
The reoxidation of reduced yeast Complex III by oxidants believed to react with cytochrome c1 exhibited multiple phases for both cytochrome c1 and the cytochromes b; the reoxidation of cytochrome b, but not cytochrome c1, was markedly slowed by the presence of antimycin. The data are consistent with the Q-cycle or any other scheme which proposes a branched path for electron transport between the cytochrome b centers and the endogenous Q6, provided certain constraints are relaxed. The reoxidation of the endogenous quinone proceeded at a rate comparable to that of the rapidly reacting cytochrome b and appeared to be complete within 100 ms. Removal of the endogenous quinone did not change the rate or extent of reoxidation of any of the heme centers, demonstrating that quinone is not required for electron transport between cytochromes b and the iron-sulfur cluster. This result is inconsistent with the requirements of the Q-cycle. Funiculosin completely inhibited the reoxidation of cytochrome b whereas the reoxidation of cytochrome c1 exhibited simple first-order kinetics in the presence of this inhibitor, implying that the iron-sulfur cluster is on the direct path of electron transfer from cytochrome b to cytochrome c1. Potent inhibition of cytochrome b oxidation was also observed with myxothiazol and mucidin. The reaction of reduced Complex III with Q1 also exhibited multiple phases in the oxidation of the cytochrome b centers; these phases were unaffected by the presence of myxothiazol. Addition of antimycin, or removal of the endogenous quinone, eliminated the rapid phases; only one of the cytochrome b centers was oxidized under these conditions. Epr showed that it is the low-potential cytochrome b that is the species rapidly oxidized.  相似文献   

8.
Sadoski RC  Engstrom G  Tian H  Zhang L  Yu CA  Yu L  Durham B  Millett F 《Biochemistry》2000,39(15):4231-4236
Electron transfer between the Rieske iron-sulfur protein (Fe(2)S(2)) and cytochrome c(1) was studied using the ruthenium dimer, Ru(2)D, to either photoreduce or photooxidize cytochrome c(1) within 1 micros. Ru(2)D has a charge of +4, which allows it to bind with high affinity to the cytochrome bc(1) complex. Flash photolysis of a solution containing beef cytochrome bc(1), Ru(2)D, and a sacrificial donor resulted in reduction of cytochrome c(1) within 1 micros, followed by electron transfer from cytochrome c(1) to Fe(2)S(2) with a rate constant of 90,000 s(-1). Flash photolysis of reduced beef bc(1), Ru(2)D, and a sacrificial acceptor resulted in oxidation of cytochrome c(1) within 1 micros, followed by electron transfer from Fe(2)S(2) to cytochrome c(1) with a rate constant of 16,000 s(-1). Oxidant-induced reduction of cytochrome b(H) was observed with a rate constant of 250 s(-1) in the presence of antimycin A. Electron transfer from Fe(2)S(2) to cytochrome c(1) within the Rhodobacter sphaeroides cyt bc(1) complex was found to have a rate constant of 60,000 s(-1) at 25 degrees C, while reduction of cytochrome b(H) occurred with a rate constant of 1000 s(-1). Double mutation of Ala-46 and Ala-48 in the neck region of the Rieske protein to prolines resulted in a decrease in the rate constants for both cyt c(1) and cyt b(H) reduction to 25 s(-1), indicating that a conformational change in the Rieske protein has become rate-limiting.  相似文献   

9.
The one-electron transfer reaction from reduced flavocytochrome b2 (fully reduced by three electron equivalents) to ferricytochrome c, both purified from the yeast Hansenula anomala, has been studied using stopped-flow spectrophotometry in the course of a single turnover, for reactants initially mixed in a heme molar ratio equal to one. The cytochrome c reduction proceeded to completion through an apparently first-order process. Depending on the experimental conditions (concentrations and or ionic strength), the reduction is of second-order or first-order character. To interpret these kinetic results computer simulation studies have been performed based on a kinetic scheme involving, besides the formation of a complex before the electron transfer step, intramolecular electron transfer steps within flavocytochrome b2 to maintain the concentration of the specific electron donor center, the reduced cytochrome b2. As far as the cytochrome c reduction rate constant, ka, and its variations were concerned the simulated data showed that this complicated scheme could approximate a mechanism which is by far the simplest, involving only the two former steps. Such a scheme accounts firstly for the hyperbolic dependence of the rate of reduction of cytochrome c, ka, upon reductant concentrations which had provided clear evidence for the kinetic existence of a complex in the reaction pathway. At 5 degrees C the rate constant for the electron transfer is 380 s-1 with an activation energy of 13.8kJ mol-1 (3.3 kcal mol-1). Secondly it predicts the observed variations of ka with ionic strength and provides estimates of the rate constants of the binding step.  相似文献   

10.
In unfertilized eggs of the sea urchin, the quite low respiratory rate is enhanced by tetramethyl- p -phenylenediamine (TMPD), phenazine methosulfate (PMS) and sperm and this augmentation is completely inhibited by carbon monoxide (CO). Exposure to light releases eggs from this CO-mediated inhibition. The action spectra for photoreactivation of CO-inhibited cytochrome c oxidase in isolated mitochondria and CO-blocked respiration in TMPD-treated eggs were found to be similar to the absorption spectrum of CO-bound cytochrome aa 3. In PMS-treated eggs and fertilized eggs, the maximum photoreactivation of CO-inhibited respiration occurred at a light fluence rate higher than that for maximum photoreactivation of CO-inhibited respiration in TMPD-treated eggs, with peaks at the same wavelengths as those in the absorption spectrum of reduced cytochrome b. A similar phenomenon was seen for NADH cytochrome c reductase in mitochondria. Thus, cytochrome c oxidase and NADH cytochrome c reductase, whose activities are not altered by fertilization, seem to be functional, even in unfertilized eggs. In unfertilized eggs, difference spectra indicated that PMS and sperm augmented cytochrome b reduction and that TMPD accelerated cytochrome c reduction without cytochrome b reduction. Therefore, it is likely that depression of electron transport to cytochrome b , which is augmented by PMS and sperm, is responsible for the low respiratory rate in unfertilized eggs.  相似文献   

11.
Addition of exogenous NADH to rotenone- and antimycin A-treated mitochondria, in 125 mM KCl, results in rates of oxygen uptake of 0.5-1 and 10-12 nanoatoms of oxygen X mg protein-1 X min-1 in the absence and presence of cytochrome c, respectively. During oxidation of exogenous NADH there is a fast and complete reduction of cytochrome b5 while endogenous or added exogenous cytochrome c become 10-15% and 100% reduced, respectively. The reoxidation of cytochrome b5, after exhaustion of NADH, precedes that of cytochrome c. NADH oxidation is blocked by mersalyl, an inhibitor of NADH-cytochrome b5 reductase. These observations support the view of an electron transfer from the outer to the inner membrane of intact mitochondria. Both the rate of exogenous NADH oxidation and the steady state level of cytochrome c reduction increase with the increase of ionic strength, while the rate of succinate oxidation undergoes a parallel depression. These observations suggest that the functions of cytochrome c as an electron carrier in the inner membrane and as an electron shuttle in the intermembrane space are alternative. It is concluded that aerobic oxidation of exogenous NADH involves the following pathway: NADH leads to NADH-cytochrome b5 reductase leads to cytochrome b5 leads to intermembrane cytochrome c leads to cytochrome oxidase leads to oxygen. It is suggested that the communication between the outer and inner membranes mediated by cytochrome c may affect the oxidation-reduction level of cytosolic NADH and the related oxidation-reduction reactions.  相似文献   

12.
1. A study is presented of the effects of pH, transmembrane pH gradient and electrical potential on oxidoreductions of b and c cytochromes in ox heart mitochondria and 'inside-out' submitochondrial particles. 2. Kinetic analysis shows that, in mitochondria at neutral pH, there is a restraint on the aerobic oxidation of cytochrome b566 with respect to cytochrome b562. Valinomycin plus K+ accelerates cytochrome b566 oxidation and retards net oxidation of cytochrome b562. At alkaline pH the rate of cytochrome b566 oxidation approaches that of cytochrome b562 and the effects of valinomycin on b cytochromes are impaired. 3. At slightly acidic pH, oxygenation of antimycin-supplemented mitochondria causes rapid reduction of cytochrome b566 and small delayed reduction of cytochrome b562. Valinomycin or a pH increase in the medium promote reduction of cytochrome b562 and decrease net reduction of cytochrome b566. 4. Addition of valinomycin to mitochondria and submitochondrial particles in the respiring steady state causes, at pH values around neutrality, preferential oxidation of cytochrome b566 with respect to cytochrome b562. The differential effect of valinomycin on oxidation of cytochromes b566 and b562 is enhanced by substitution of 1H2O of the medium with 2H2O and tends to disappear as the pH of the medium is raised to alkaline values. 5. Nigericin addition in the aerobic steady state causes, both in mitochondria and submitochondrial particles, preferential oxidation of cytochrome b562 with respect to cytochrome b566. This is accompanied by c cytochrome oxidation in mitochondria but c cytochrome reduction in submitochondrial particles. 6. In mitochondria as well as in submitochondrial particles, the aerobic transmembrane potential (delta psi) does not change by raising the pH of the external medium from neutrality to alkalinity. The transmembrane pH gradient (delta pH) on the other hand, decrease slightly. 7. The results presented provide evidence that the delta psi component of the aerobic delta microH+ (the sum of the proton chemical and electrical activities) exerts a pH-dependent constraint on forward electron flow from cytochrome b566 to cytochrome b562. This effect is explained as a consequence of anisotropic location of cytochromes b566 and b562 in the membrane and the pH-dependence of the redox function of these cytochromes. Transmembrane delta pH, on the other hand, exerts control on electron flow from cytochrome b562 to c cytochromes.  相似文献   

13.
When cytochrome c oxidase is isolated from mitochondria, the purified enzyme requires both cytochrome c and O2 to achieve its maximum rate of internal electron transfer from cytochrome a to cytochrome a3. When reductants other than cytochrome c are used, the rate of internal electron transfer is very slow. In this paper we offer an explanation for the slow reduction of cytochrome a3 when reductants other than cytochrome c are used and for the apparent allosteric effects of cytochrome c and O2. Our model is based on the conventional understanding of cytochrome oxidase mechanism (i.e. electron transfer from cytochrome a/CuA to cytochrome a3/CuB), but assumes a relatively rapid two-electron transfer between cytochrome a/CuA and cytochrome a3/CuB and a thermodynamic equilibrium in the "resting" enzyme (the enzyme as isolated) which favors reduced cytochrome a and oxidized cytochrome a3. Using the kinetic constants that are known for this reaction, we find that the activating effects of O2 and cytochrome c on the rate of electron transfer from cytochrome a to cytochrome a3 conform to the predictions of the model and so provide no evidence of any allosteric effects or control of cytochrome c oxidase by O2 or cytochrome c.  相似文献   

14.
D S Beattie  L Clejan 《Biochemistry》1986,25(6):1395-1402
Mitochondria isolated from coenzyme Q deficient yeast cells had no detectable NADH:cytochrome c reductase or succinate:cytochrome c reductase activity but contained normal amounts of cytochromes b and c1 by spectral analysis. Addition of the exogenous coenzyme Q derivatives including Q2, Q6, and the decyl analogue (DB) restored the rate of antimycin- and myxothiazole-sensitive cytochrome c reductase with both substrates to that observed with reduced DBH2. Similarly, addition of these coenzyme Q analogues increased 2-3-fold the rate of cytochrome c reduction in mitochondria from wild-type cells, suggesting that the pool of coenzyme Q in the membrane is limiting for electron transport in the respiratory chain. Preincubation of mitochondria from the Q-deficient yeast cells with DBH2 at 25 degrees C restored electrogenic proton ejection, resulting in a H+/2e- ratio of 3.35 as compared to a ratio of 3.22 observed in mitochondria from the wild-type cell. Addition of succinate and either coenzyme Q6 or DB to mitochondria from the Q-deficient yeast cells resulted in the initial reduction of cytochrome b followed by a slow reduction of cytochrome c1 with a reoxidation of cytochrome b. The subsequent addition of antimycin resulted in the oxidant-induced extrareduction of cytochrome b and concomitant oxidation of cytochrome c1 without the "red" shift observed in the wild-type mitochondria. Similarly, addition of antimycin to dithionite-reduced mitochondria from the mutant cells did not result in a red shift in the absorption maximum of cytochrome b as was observed in the wild-type mitochondria in the presence or absence of exogenous coenzyme Q analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
To better understand the mechanism of divergent electron transfer from ubiquinol to the iron-sulfur protein and cytochrome b(L) within the cytochrome bc(1) complex, we have examined the effects of antimycin on the presteady state reduction kinetics of the bc(1) complex in the presence or absence of endogenous ubiquinone. When ubiquinone is present, antimycin slows the rate of cytochrome c(1) reduction by approximately 10-fold but had no effect upon the rate of cytochrome c(1) reduction in bc(1) complex lacking endogenous ubiquinone. In the absence of endogenous ubiquinone cytochrome c(1), reduction was slower than when ubiquinone was present and was similar to that in the presence of ubiquinone plus antimycin. These results indicate that the low potential redox components, cytochrome b(H) and b(L), exert negative control on the rate of reduction of cytochrome c(1) and the Rieske iron-sulfur protein at center P. If electrons cannot equilibrate from cytochrome b(H) and b(L) to ubiquinone, partial reduction of the low potential components slows reduction of the high potential components. We also examined the effects of decreasing the midpoint potential of the iron-sulfur protein on the rates of cytochrome b reduction. As the midpoint potential decreased, there was a parallel decrease in the rate of b reduction, demonstrating that the rate of b reduction is dependent upon the rate of ubiquinol oxidation by the iron-sulfur protein. Together these results indicate that ubiquinol oxidation is a concerted reaction in which both the low potential and high potential redox components control ubiquinol oxidation at center P, consistent with the protonmotive Q cycle mechanism.  相似文献   

16.
Dimeric ubiquinol:cytochrome c reductase of Neurospora mitochondria was isolated as a protein-Triton complex and free of ubiquinol (Q). The enzyme was incorporated into phosphatidylcholine membranes together with Q. The effects of varying the molar ratio of Q to enzyme on the electron transfer from duroquinol (DHQ2) to the cytochromes c, c1 and b were studied. The rate of electron flow from DQH2 to cytochrome c was 15 times increased by Q and was maximal when one molecule of Q was bound to one enzyme dimer. The apparent Km value for DQH2 of the Q-free enzyme was 5 microM and of the Q-supplemented enzyme 25 microM. The pre-steady-state rate of electron transfer from DQH2 to cytochrome c1 was also 15 times increased by Q and was maximal with one Q molecule bound to one enzyme dimer. This effect of Q was inhibited by antimycin. The pre-steady-state rate of electron transfer from DQH2 to cytochrome b was 5 times decreased when Q was bound to the enzyme and this effect of Q was insensitive to myxothiazol. The H+/2e- stoichiometry with DQH2 as substrate of the Q-supplemented enzyme was 3.6. These results are interpreted in accordance with a Q-cycle mechanism operating in a dimeric cytochrome reductase. Each enzyme monomer catalyses a single electron transfer from the QH2-oxidation centre to the Q-reduction centre and the two monomers cooperate in the reduction of Q to QH2 at one Q-reduction centre. This centre contains two different binding sites for Q. DQH2 does not properly react at the QH2-oxidation centre. DQH2, however, binds to the loose Q-binding site of the Q-reduction centre and reduces the Q bound to the tight Q-binding site of the centre. The QH2 thus formed at the Q-reduction centre serves as electron donor for the QH2-oxidation centre.  相似文献   

17.
Two sets of studies have been reported on the electron transfer pathway of complex III in bovine heart submitochondrial particles (SMP). 1) In the presence of myxothiazol, MOA-stilbene, stigmatellin, or of antimycin added to SMP pretreated with ascorbate and KCN to reduce the high potential components (iron-sulfur protein (ISP) and cytochrome c(1)) of complex III, addition of succinate reduced heme b(H) followed by a slow and partial reduction of heme b(L). Similar results were obtained when SMP were treated only with KCN or NaN(3), reagents that inhibit cytochrome oxidase, not complex III. The average initial rate of b(H) reduction under these conditions was about 25-30% of the rate of b reduction by succinate in antimycin-treated SMP, where both b(H) and b(L) were concomitantly reduced. These results have been discussed in relation to the Q-cycle hypothesis and the effect of the redox state of ISP/c(1) on cytochrome b reduction by succinate. 2) Reverse electron transfer from ISP reduced with ascorbate plus phenazine methosulfate to cytochrome b was studied in SMP, ubiquinone (Q)-depleted SMP containing 相似文献   

18.
A membrane potential jump was induced by the addition of valinomycin in the presence of a KCl concentration gradient across the membrane of Rhodopseudomonas sphaeroides chromatophores. As well as a carotenoid band shift, which is known to be an indicator of membrane potential, absorbance changes due to the oxidation-reduction reactions of cytochromes accompanied the jump. Under aerobic conditions with no reductant added, a part of cytochrome c2 was reduced by an inside-positive potential jump of about 100 mV in the time range of tens of seconds. This can be explained by the location of the cytochrome on the inner side of the chromatophore membrane and electrophoretic flow of electrons across the membrane. On the other hand, in the presence of 1 mM ascorbate, a similar jump of membrane potential induced a rapid oxidation of cytochrome c2 and a subsequent reduction. A rapid reduction of b-type cytochrome was also observed. Antimycin A inhibited the c2 oxidation, but did not inhibit the b reduction. The oxidation of cytochrome c2 may be explained by a diffusion-potential-induced electron flow to cytochrome b and a simultaneous electron donation by cytochrome b and cytochrome c2 to a common electron acceptor, possibly a quinone.  相似文献   

19.
A study is presented of the characteristics of redox-linked proton translocation in the b-c1 complex isolated from beef-heart mitochondria and reconstituted into phospholipid vesicles. Measurements of the H+/e- stoichiometry, with three different methods, show that four protons are released from the vesicles per 2e- flowing from quinols to cytochrome c, two of these protons formally deriving from scalar oxidation of quinols by cytochrome c. This H+/e- stoicheiometry is independent of the initial redox state of the b-c1 complex (fully reduced or oxidized) and the rate of electron flow through the complex. It does not change in the pH range 6.0 - 7.2, but declines to 1.5 going with pH from 7.2 - 8.3. This decrease is accompanied by enhancement of the rate of electron flow in the coupled state. Collapse of delta psi effected by valinomycin addition to turning-over b-c1 vesicles resulted in substantial oxidation of cytochrome b-566 and comparable reduction of cytochrome c1, with little oxidation of cytochrome b-562. Nigericin alone had no effect on the steady-state redox levels of b and c cytochromes. Its addition in the presence of valinomycin caused oxidation of b cytochromes but no change in the redox state of cytochrome c1. Valinomycin alone caused a marked enhancement of the rate of electron flow through the complex. Nigericin alone was ineffective, but caused further stimulation of electron flow when added in the presence of valinomycin. The data presented are discussed in terms of two mechanisms: the Q cycle and a model based on combination of protonmotive catalysis by special bound quinone and proton conduction along pathways in the apoproteins.  相似文献   

20.
A non-photosynthetic mutant (Ps-) of Rhodopseudomonas capsulata, designated R126, was analyzed for a defect in the cyclic electron transfer system. Compared to a Ps+ strain MR126, the mutant was shown to have a full complement of electron transfer components (reaction centers, ubiquinone-10, cytochromes b, c1, and c2, the Rieske 2-iron, 2-sulfur (Rieske FeS) center, and the antimycin-sensitive semiquinone). Functionally, mutant R126 failed to catalyze complete cytochrome c1 + c2 re-reduction or cytochrome b reduction following a short (10 microseconds) flash of actinic light. Evidence (from flash-induced carotenoid band shift) was characteristic of inhibition of electron transfer proximal to cytochrome c1 of the ubiquinol-cytochrome c2 oxidoreductase. Three lines of evidence indicate that the lesion of R126 disrupts electron transfer from quinol to Rieske FeS: 1) the degree of cytochrome c1 + c2 re-reduction following a flash is indicative of electron transfer from Rieske FeS to cytochrome c1 + c2 without redox equilibration with an additional electron from a quinol; 2) inhibitors that act at the Qz site and raise the Rieske FeS midpoint redox potential (Em), namely 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole or 3-alkyl-2-hydroxy-1,4-napthoquinone, have no effect on cytochrome c1 + c2 oxidation in R126; 3) the Rieske FeS center, although it exhibits normal redox behavior, is unable to report the redox state of the quinone pool, as metered by its EPR line shape properties. Flash-induced proton binding in R126 is indicative of normal functional primary (QA) and secondary (QB) electron acceptor activity of the photosynthetic reaction center. The Qc functional site of cytochrome bc1 is intact in R126 as measured by the existence of antimycin-sensitive, flash-induced cytochrome b reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号