首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prokaryotic carbonic anhydrases   总被引:2,自引:0,他引:2  
Carbonic anhydrases catalyze the reversible hydration of CO(2) [CO(2)+H(2)Oright harpoon over left harpoon HCO(3)(-)+H(+)]. Since the discovery of this zinc (Zn) metalloenzyme in erythrocytes over 65 years ago, carbonic anhydrase has not only been found in virtually all mammalian tissues but is also abundant in plants and green unicellular algae. The enzyme is important to many eukaryotic physiological processes such as respiration, CO(2) transport and photosynthesis. Although ubiquitous in highly evolved organisms from the Eukarya domain, the enzyme has received scant attention in prokaryotes from the Bacteria and Archaea domains and has been purified from only five species since it was first identified in Neisseria sicca in 1963. Recent work has shown that carbonic anhydrase is widespread in metabolically diverse species from both the Archaea and Bacteria domains indicating that the enzyme has a more extensive and fundamental role in prokaryotic biology than previously recognized. A remarkable feature of carbonic anhydrase is the existence of three distinct classes (designated alpha, beta and gamma) that have no significant sequence identity and were invented independently. Thus, the carbonic anhydrase classes are excellent examples of convergent evolution of catalytic function. Genes encoding enzymes from all three classes have been identified in the prokaryotes with the beta and gamma classes predominating. All of the mammalian isozymes (including the 10 human isozymes) belong to the alpha class; however, only nine alpha class carbonic anhydrase genes have thus far been found in the Bacteria domain and none in the Archaea domain. The beta class is comprised of enzymes from the chloroplasts of both monocotyledonous and dicotyledonous plants as well as enzymes from phylogenetically diverse species from the Archaea and Bacteria domains. The only gamma class carbonic anhydrase that has thus far been isolated and characterized is from the methanoarchaeon Methanosarcina thermophila. Interestingly, many prokaryotes contain carbonic anhydrase genes from more than one class; some even contain genes from all three known classes. In addition, some prokaryotes contain multiple genes encoding carbonic anhydrases from the same class. The presence of multiple carbonic anhydrase genes within a species underscores the importance of this enzyme in prokaryotic physiology; however, the role(s) of this enzyme is still largely unknown. Even though most of the information known about the function(s) of carbonic anhydrase primarily relates to its role in cyanobacterial CO(2) fixation, the prokaryotic enzyme has also been shown to function in cyanate degradation and the survival of intracellular pathogens within their host. Investigations into prokaryotic carbonic anhydrase have already led to the identification of a new class (gamma) and future research will undoubtedly reveal novel functions for carbonic anhydrase in prokaryotes.  相似文献   

2.
Carbonic anhydrase, a zinc enzyme catalyzing the interconversion of carbon dioxide and bicarbonate, is nearly ubiquitous in the tissues of highly evolved eukaryotes. Here we report on the first known plant-type (beta-class) carbonic anhydrase in the archaea. The Methanobacterium thermoautotrophicum DeltaH cab gene was hyperexpressed in Escherichia coli, and the heterologously produced protein was purified 13-fold to apparent homogeneity. The enzyme, designated Cab, is thermostable at temperatures up to 75 degrees C. No esterase activity was detected with p-phenylacetate as the substrate. The enzyme is an apparent tetramer containing approximately one zinc per subunit, as determined by plasma emission spectroscopy. Cab has a CO(2) hydration activity with a k(cat) of 1.7 x 10(4) s(-1) and K(m) for CO(2) of 2.9 mM at pH 8.5 and 25 degrees C. Western blot analysis indicates that Cab (beta class) is expressed in M. thermoautotrophicum; moreover, a protein cross-reacting to antiserum raised against the gamma carbonic anhydrase from Methanosarcina thermophila was detected. These results show that beta-class carbonic anhydrases extend not only into the Archaea domain but also into the thermophilic prokaryotes.  相似文献   

3.
Approximately half the carbonic anhydrase activity of sheep parotid-gland homogenate is derived from a high-Mr protein [Fernley, Wright & Coghlan (1979) FEBS Lett. 105, 299-302]. This enzyme has now been purified to homogeneity, and its properties were compared with those of the well-characterized sheep carbonic anhydrase II. The protein has an apparent Mr of 540,000 as measured by gel filtration under non-denaturing conditions and an apparent subunit Mr of 45,000 as measured by SDS/polyacrylamide-gel electrophoresis. After deglycosylation with the enzyme N-glycanase the protein migrates with an apparent Mr of 36,000 on SDS/polyacrylamide-gel electrophoresis. The CO2-hydrating activity was 340 units/mg compared with 488 units/mg for sheep carbonic anhydrase II measured under identical conditions. This enzyme does not, however, hydrolyse p-nitrophenyl acetate. The enzyme contains 0.8 g-atom of zinc/mol of protein subunit. The peptide maps of the two carbonic anhydrases differ significantly from one another, indicating they are not related closely structurally. Unlike the carbonic anhydrase II isoenzyme, which has a blocked N-terminus, the high-Mr enzyme has a free glycine residue at its N-terminus.  相似文献   

4.
The product of the cynT gene of the cyn operon in Escherichia coli has been identified as a carbonic anhydrase. The cyn operon also includes the gene cynS, encoding the enzyme cyanase. Cyanase catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. The carbonic anhydrase was isolated from an Escherichia coli strain overexpressing the cynT gene and characterized. The purified enzyme was shown to contain 1 Zn2+/subunit (24 kDa) and was found to behave as an oligomer in solution; the presence of bicarbonate resulted in partial dissociation of the oligomeric enzyme. The kinetic properties of the enzyme are similar to those of carbonic anhydrases from other species, including inhibition by sulfonamides and cyanate. The amino acid sequence shows a high degree of identity with the sequences of two plant carbonic anhydrases. but not with animal and algal carbonic anhydrases. Since carbon dioxide formed in the bicarbonate-dependent decomposition of cyanate diffuses out of the cell faster than it would be hydrated to bicarbonate, the apparent function of the induced carbonic anhydrase is to catalyze hydration of carbon dioxide and thus prevent depletion of cellular bicarbonate.  相似文献   

5.
Madin Darby canine kidney (MDCK) renal epithelial cell cultures have been investigated with respect to their potency to express carbonic anhydrase activity using histochemical methods. Acetazolamide inhibitable carbonic anhydrase activity could be detected in the cytoplasmic compartment as well as in the apical membrane of cells when grown on solid culture supports. Cells forming domes in MDCK monolayers exhibit the highest histochemically detectable enzyme activity. The attempt to subculture clonal cell lines from MDCK monolayer cultures resulted in the establishment of 5 clones, slightly different with respect to size and shape of cells and their potency to form domes. Scanning electron microscopy ensured the identification of one clone (1A4), which distinctly differed from the others with respect to the apical membrane architecture. Co-localization of peanut agglutinin and carbonic anhydrase activity at the plasma membrane always revealed a combined occurrence of enzyme reactivity and lectin binding in the apical membrane domain. Both, lectin binding and carbonic anhydrase activity were distinctly more intense in plasma membrane regions equipped with microvilli. From the results it is concluded that MDCK cells in tissue culture retained properties of intercalated cells of the nephron collecting duct segment.  相似文献   

6.
K Kato 《FEBS letters》1990,271(1-2):137-140
I isolated a mouse cDNA clone encoding a novel polypeptide which has strong homology with carbonic anhydrase. Unlike the other carbonic anhydrases, it has an additional N-terminal domain with a glutamic acid stretch and an arginine substitutes one of the three histidine residues which bind zinc ion. In the central nervous system, carbonic anhydrase is known to be expressed only in glia cells, but this gene is expressed in neuron, but only in Purkinje cells.  相似文献   

7.
The gene encoding carbonic anhydrase from Methanosarcina thermophila was hyperexpressed in Escherichia coli, and the heterologously produced enzyme was purified 14-fold to apparent homogeneity. The enzyme purified from E. coli has properties (specific activity, inhibitor sensitivity, and thermostability) similar to those of the authentic enzyme isolated from M. thermophila; however, a discrepancy in molecular mass suggests that the carbonic anhydrase is posttranslationally modified in either E. coli or M. thermophila. Both the authentic and heterologously produced enzymes were stable to heating at 55 degrees C for 15 min but were inactivated at higher temperatures. No esterase activity was detected with p-nitrophenylacetate as the substrate. Plasma emission spectroscopy revealed approximately 0.6 Zn per subunit. As judged from the estimated native molecular mass, the enzyme is either a trimer or a tetramer. Western blot (immunoblot) analysis of cell extract proteins from M. thermophila indicates that the levels of carbonic anhydrase are regulated in response to the growth substrate, with protein levels higher in acetate than in methanol- or trimethylamine-grown cells.  相似文献   

8.
A physiologically significant level of intracellular carbonic anhydrase has been identified in Chlamydomonas reinhardtii after lysis of the cell wall-less mutant, cw15, and two intracellular polypeptides have been identified which bind to anti-carbonic anhydrase antisera. The susceptibility of the intracellular activity to sulfonamide carbonic anhydrase inhibitors is more than three orders-of-magnitude less than that of the periplasmic enzyme, indicating that the intracellular activity was distinct from the periplasmic from of the enzyme. When electrophoretically separated cell extracts or chloroplast stromal fractions were probed with either anti-C. reinhardtii periplasmic carbonic anhydrase antiserum or anti-spinach carbonic anhydrase antiserum, immunoreactive polypeptides of 45 kilodaltons and 110 kilodaltons were observed with both antisera. The strongly immunoreactive 37 kilodalton polypeptide due to the periplasmic carbonic anhydrase was also observed in lysed cells, but neither the 37 kilodalton nor the 110 kilodalton polypeptides were present in the chloroplast stromal fraction. These studies have identified intracellular carbonic anhydrase activity, and putative intracellular carbonic anhydrase polypeptides in Chlamydomonas reinhardtii represented by a 45 kilodalton polypeptide in the chloroplast and a 110 kilodalton form probably in the cytoplasm, which may be associated with an intracellular inorganic carbon concentrating system.  相似文献   

9.
Carbonic anhydrase C in white-skeletal-muscle tissue.   总被引:2,自引:1,他引:1       下载免费PDF全文
We investigated the activity of carbonic anhydrase in blood-free perfused white skeletal muscles of the rabbit. Carbonic anhydrase activities were measured in supernatants and in Triton extracts of the particulate fractions of white-skeletal-muscle homogenate by using a rapid-reaction stopped-flow apparatus equipped with a pH electrode. An average carbonic anhydrase concentration of about 0.5 microM was determined for white skeletal muscle. This concentration is about 1% of that inside the erythrocyte. Some 85% of the muscle enzyme was found in the homogenate supernatant, and only 15% appeared to be associated with membranes and organelles. White-skeletal-muscle carbonic anhydrase was characterized in terms of its Michaelis constant and catalytic-centre activity (turnover number) for CO2 and its inhibition constant towards ethoxzolamide. These properties were identical with those of the rabbit erythrocyte carbonic anhydrase C, suggesting that a type-C enzyme is present in white skeletal muscle. Affinity chromatography of muscle supernatant and of lysed erythrocytes showed that, whereas rabbit erythrocytes contain about equal amounts of carbonic anhydrase isoenzymes B and C, the B isoenzyme is practically absent from white skeletal muscle. Similarly, ethoxzolamide-inhibition curves suggested that white skeletal muscle contains no carbonic anhydrase A. It is concluded that white skeletal muscle contains essentially one carbonic anhydrase isoenzyme, the C form, most of which is probably of cytosolic origin.  相似文献   

10.
1. Carbonic anhydrase (carbonate hydro-lyase, EC 4.2.1.1) has been purified from erythrocytes of hagfish (Myxine glutinosa). A single form with low specific CO2 hydration activity was isolated. The purified carbonic anhydrase appeared homogeneous judging from polyacrylamide gel electrophoresis and gel filtration experiments. The protein has a molecular weight of about 29 000, corresponding to about 260 amino acid residues. This molecular weight is in accordance with other vertebrate carbonic anhydrases with the exception of the elasmobranch enzymes, which have Mr 36 000--39 000. 2. The molecular weight obtained for hagfish carbonic anhydrase indicates that a carbonic anhydrase with Mr approx. 29 000 is the ancestral type of the vertebrate enzyme rather than, as in sharks, a heavier carbonic anhydrase molecule. 3. The circular dichroism spectrum may indicate a somewhat different structural arrangement of aromatic amino acid residues in this enzyme than in the mammalian carbonic anhydrases. 4. The enzyme is strongly inhibited by acetazolamide and also to a lesser extent by monovalent anions. 5. Zn2+, which is essential for activity, appears, contrary to other characterized carbonic anhydrases, less strongly bound in the active site of the enzyme.  相似文献   

11.
Rat renal and erythrocyte carbonic anhydrases (carbonate hydro-lyase, EC 4.2.1.1) were isolated by affinity chromatography. The erythrocytes contain two major forms of the enzyme. One of the forms has a specific activity (towards CO2) 30 times higher than the other and constitutes the major part of the total cellular carbonic anhydrase. The amino acid compositions of this high-activity type and of the low-activity type are similar to the compositions reported for these types in other species. The kidney appears to have only one high-activity form of carbonic anhydrase which is very similar to and probably identical with the erythrocyte high-activity form.  相似文献   

12.
Purification and characterization of human salivary carbonic anhydrase   总被引:15,自引:0,他引:15  
A novel carbonic anhydrase was purified from human saliva with inhibitor affinity chromatography followed by ion-exchange chromatography. The molecular weight was determined to be 42,000 on sodium dodecyl sulfate polyacrylamide gel electrophoresis, indicating that the human salivary enzyme is larger than the cytosolic isoenzymes CA I, CA II, and CA III (Mr 29,000) from human tissue sources. Each molecule of the salivary enzyme had two N-linked oligosaccharide chains which were cleaved by endo-beta-N-acetylglucosaminidase F but not by endo-beta-N-acetylglucosaminidase H, indicating that the oligosaccharides are complex type. The isoelectric point was determined to be 6.4, but significant charge heterogeneity was found in different preparations. The human salivary isozyme has lower specific activity than the rat salivary isozyme and the human red blood cell isozyme II in the CO2 hydratase reaction. The inhibitory properties of the salivary isozyme resemble those of CA II with iodide, sulfanilamide, and bromopyruvic acid, but the salivary enzyme is less sensitive to acetazolamide and methazolamide than CA II. Antiserum raised in a rabbit against the salivary enzyme cross-reacted with CA II from human erythrocytes, indicating that human salivary carbonic anhydrase and CA II must share at least one antigenic site. CA I and CA III did not crossreact with this antiserum. The amount of salivary carbonic anhydrase in the saliva of the CA II-deficient patients was greatly reduced, indicating that the CA II deficiency mutation directly or indirectly affects the expression of the salivary carbonic anhydrase isozyme. From these results we conclude that the salivary carbonic anhydrase is immunologically and genetically related to CA II, but that it is a novel and distinct isozyme which we tentatively designate CA VI.  相似文献   

13.
Sulfonamide drugs mediate their main therapeutic effects through modulation of the activity of membrane and cytosolic carbonic anhydrases. How interactions of sulfonamide drugs impact structural properties and activity of carbonic anhydrases requires further study. Here the effect of acetazolamide on the structure and function of bovine carbonic anhydrase II (cytosolic form of the enzyme) was evaluated. The Far-UV CD studies indicated that carbonic anhydrase, for the most part, retains its secondary structure in the presence of acetazolamide. Fluorescence measurements using iodide ions and ANS, along with ASA calculations, revealed that in the presence of acetazolamide minimal conformational changes occurred in the carbonic anhydrase structure. These structural changes, which may involve spatial reorientation of Trp 4 and Trp 190 or some other related aminoacyl residues near the active site, considerably reduced the catalytic activity of the enzyme while its thermal stability was slightly increased. Our binding results indicated that binding of acetazolamide to the protein could occur with a 1:1 ratio, one mole of acetazolamide per one mole of the protein. However, the obtained kinetic results supported the existence of two acetazolamide binding sites on the protein structure. The occupation of each of these binding sites by acetazolamide completely inactivates the enzyme. Advanced analysis of the kinetic results revealed that there are two substrate (p-NPA) binding sites whose simultaneous occupation is required for full enzyme activity. Thus, these studies suggest that the two isoforms of CA II should exist in the medium, each of which contains one substrate binding site (catalytic site) and one acetazolamide binding site. The acetazolamide binding site is equivalent to the catalytic site, thus, inhibiting enzyme activity by a competitive mechanism.  相似文献   

14.
Abstract— The distribution of carbonic anhydrase was examined in subcellular fractions of perfused rat brain and compared with those of markers for cytosol (lactic dehydrogenase), mitochondrial matrix (glutamic dehydrogenase), and mitochondrial membranes (succinic dehydrogenase). About half of the total carbonic anhydrase was found in particulate fractions, with the greatest part of this in the crude mitochondrial fraction. This fraction was separated into its components on a discontinuous sucrose gradient either as such or after isotonic mechanical disruption with a French pressure cell, and the resultant fractions were characterized by electron microscopy and by assay of marker enzymes.
Carbonic anhydrase was solubilized by mechanical disruption, but not to the same extent as lactic dehydrogenase. The highest specific activity for carbonic anhydrase was found in the myelin fraction of the gradient. A mitochondrial locus for carbonic anhydrase is unlikely, but the presence of the enzyme in synaptosomes remains in question.
Addition of soluble carbonic anhydrase did not significantly increase the activity of particulate fractions. Treatment of particulate fractions with detergent was necessary to reveal latent activity; this procedure resulted in a more than ten-fold increase in the measurable carbonic anhydrase activity of myelin fragments.  相似文献   

15.
Abstract— Animals receiving hexachlorophene (HCP) in their diet develop cerebral edema with vacuolation of the myelin sheath. When carbonic anhydrase activities were measured in homogenates of brains from HCP-fed and control rats, the HCP-fed rats showed small decreases in the enzyme activity, but these changes were not statistically significant. HCP did inhibit the enzyme in vitro but at higher concentrations (10−5-10−4 m ) than have been reported for HCP levels in brains of experimental animals. Carbonic anhydrase activity was present in myelin preparations obtained by gradient centrifugation and osmotic shock or by subcellular fractionation. When the latter procedure was used, myelin carbonic anhydrase had a specific activity which was higher than that of the mitochondrial fraction. The myelin enzyme was inhibited by 10−910−8 m -acetazolamide and, like the homogenates and the commercial enzyme, was inhibited by HCP. The mechanism for HCP toxicity remains unknown, but this study does suggest that carbonic anhydrase is an intrinsic component of the myelin sheath.  相似文献   

16.
Sexual differentiation of rat liver carbonic anhydrase III   总被引:5,自引:0,他引:5  
Using radioimmunoassay, the concentration of carbonic anhydrase III in the livers of adult male rats was found to be approx. 30-times greater than that observed in mature females. Castration of male rats led to a marked reduction in liver carbonic anhydrase III concentrations which could be partially restored to control levels by testosterone replacement. Administration of testosterone to ovariectomised female rats induced about a 5-fold increase in liver carbonic anhydrase III concentration. Immunoprecipitation analysis of the products of liver mRNA translation in vitro with antiserum specific for carbonic anhydrase III showed that hormonal control of the levels of carbonic anhydrase III in liver is mediated by changes in the amount of translatable carbonic anhydrase III mRNA. Marked changes in liver carbonic anhydrase III concentrations were also observed in developing and ageing male rats.  相似文献   

17.
Cobalt(III)bovine carbonic anhydrase B was prepared by the oxidation of the cobalt(II) enzyme with hydrogen peroxide and was purified by affinity chromatography. The oxidation reaction is inhibited by specific inhibitors of carbonic anhydrase. The inhibition is explained by the fact that the Co(II)-enzyme . inhibitor complex cannot be directly oxidized by hydrogen peroxide, but has to dissociate to give free Co(II) enzyme which is then oxidized. The Co(III) ion in Co(III) carbonic anhydrase cannot be directly substituted by zinc ions. It can be reduced by either dithionite or BH-4 ions to give, first, their complexes with the Co(II) enzyme, and upon their removal, a fully active Co(II) enzyme. Cyanide and azide bind to cobalt(III) carbonic anhydrase with similar rate constants of 0.060 +/- 0.005 and 0.070 +/- 0.007 M-1 S-1 respectively. These rates are faster than those found for Co(III) inorganic complexes. The Co(III) ion in both Co(III) carbonic anhydrase and Co(III) carboxypeptidase A was found to be diamagnetic, indicating a near octahedral symmetry.  相似文献   

18.
Using radioimmunoassay, the concentration of carbonic anhydrase III in the livers of adult male rats was found to be approx. 30-times greater than that observed in mature females. Castration of male rats led to a marked reduction in liver carbonic anhydrase III concentrations which could be partially restored to control levels by testosterone replacement. Administration of testosterone to ovariectomised female rats induced about a 5-fold increase in liver carbonic anhydrase III concentration. Immunoprecipitation analysis of the products of liver mRNA translation in vitro with antiserum specific for carbonic anhydrase III showed that hormonal control of the levels of carbonic anhydrase III in liver is mediated by changes in the amount of translatable carbonic anhydrase III mRNA. Marked changes in liver carbonic anhydrase III concentrations were also observed in developing and ageing male rats.  相似文献   

19.
Prontosil, a carbonic anhydrase inhibitor of orange-red colour, is used to visualize carbonic anhydrase bands during isoelectric focusing in polyacrylamide gels. 5–60 ng of the sulfonamide Prontosil are added to the 100–200 μl samples before application to the gels. Bound Prontosil moves into the gel together with carbonic anhydrase and stains the enzyme bands formed there, while unbound Prontosil remains on top of the gels. The method is specific, no proteins other than carbonic anhydrase were observed to be stained, and it requires no special equippment. It was applied to chloroform/ethanol extracts of erythrolysates and while muscle homogenates from rabbits. Densitometric evaluation of the Prontosil-stained bands obtained with these extracts showed that rabbit red cells contain roughly equla amounts of carbonic anhydrase isoenzymes B and C while in rabbit white skeletal muscle isoenzyme C is predominant and little B enzyme occurs. These results confirm previous findings obtained by affinity chromatography of erythrolysates and muscle homogenates.  相似文献   

20.
Membrane-associated carbonic anhydrase purified from bovine lung   总被引:18,自引:0,他引:18  
We found carbonic anhydrase activity associated with particulate fractions of homogenates of rat, rabbit, human, and bovine lungs. These membrane-associated carbonic anhydrases were remarkably stable in solutions containing sodium dodecyl sulfate (SDS). The bovine enzyme was dissolved with SDS and purified by affinity chromatography and gel filtration. The purified enzyme contains glucosamine, galactose, and sialic acid; it is at least 20% carbohydrate. The apparent molecular weight by SDS-polyacrylamide gel electrophoresis (52,000) may be higher than the actual molecular weight due to the presence of carbohydrate. The enzyme contains cystine, an amino acid that is absent in bovine erythrocyte carbonic anhydrase. Dithiothreitol greatly accelerated the rate of inactivation of the membrane-associated enzyme in SDS, so disulfide bonds appear to stabilize this enzyme. The specific CO2-hydrating activity was about half that of the erythrocyte enzyme. Acetazolamide inhibits the membrane-associated enzyme (Ki = 10 nM) nearly as well as the erythrocyte enzyme (Ki = 3 nM). Antibody to bovine erythrocyte carbonic anhydrase did not inhibit the membrane-associated enzyme. Other investigators have accumulated a good deal of evidence for carbonic anhydrase on the luminal surface of pulmonary capillaries. The enzyme described here appears to be a new isozyme whose properties are consistent with such a localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号