首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations in compression tests of articular cartilage have revealed unequal load increments for compression and release of the same amplitude applied to a disk with an identical previously imposed compression (in equilibrium). The mechanism of this asymmetric transient response is investigated here using a nonlinear fibril-reinforced model. It is found that the asymmetry is predominantly produced by the fibril stiffening with its tensile strain. In addition, allowing the hydraulic permeability to decrease significantly with compressive dilatation of cartilage increases the transient fibril strain, resulting in a stronger asymmetry. Large deformation also enhances the asymmetry as a consequence of stronger fibril stiffening.  相似文献   

2.
The stiffness of articular cartilage is a nonlinear function of the strain amplitude and strain rate as well as the loading history, as a consequence of the flow of interstitial water and the stiffening of the collagen fibril network. This paper presents a full investigation of the interplay between the fluid kinetics and fibril stiffening of unconfined cartilage disks by analyzing over 200 cases with diverse material properties. The lower and upper elastic limits of the stress (under a given strain) are uniquely established by the instantaneous and equilibrium stiffness (obtained numerically for finite deformations and analytically for small deformations). These limits could be used to determine safe loading protocols in order that the stress in each solid constituent remains within its own elastic limit. For a given compressive strain applied at a low rate, the loading is close to the lower limit and is mostly borne directly by the solid constituents (with little contribution from the fluid). In contrast, however in case of faster compression, the extra loading is predominantly transported to the fibrillar matrix via rising fluid pressure with little increase of stress in the nonfibrillar matrix. The fibrillar matrix absorbs the loading increment by self-stiffening: the quicker the loading the faster the fibril stiffening until the upper elastic loading limit is reached. This self-protective mechanism prevents cartilage from damage since the fibrils are strong in tension. The present work demonstrates the ability of the fibril reinfored poroelastic models to describe the strain rate dependent behavior of articular cartilage in unconfined compression using a mechanism of fibril stiffening mainly induced by the fluid flow.  相似文献   

3.
The depth dependence of material properties of articular cartilage, known as the zonal differences, is incorporated into a nonlinear fibril-reinforced poroelastic model developed previously in order to explore the significance of material heterogeneity in the mechanical behavior of cartilage. The material variations proposed are based on extensive observations. The collagen fibrils are modeled as a distinct constituent which reinforces the other two constituents representing proteoglycans and water. The Young's modulus and Poisson's ratio of the drained nonfibrillar matrix are so determined that the aggregate compressive modulus for confined geometry fits the experimental data. Three nonlinear factors are considered, i.e. the effect of finite deformation, the dependence of permeability on dilatation and the fibril stiffening with its tensile strain. Solutions are extracted using a finite element procedure to simulate unconfined compression tests. The features of the model are then demonstrated with an emphasis on the results obtainable only with a nonhomogeneous model, showing reasonable agreement with experiments. The model suggests mechanical behaviors significantly different from those revealed by homogeneous models: not only the depth variations of the strains which are expected by qualitative analyses, but also, for instance, the relaxation-time dependence of the axial strain which is normally not expected in a relaxation test. Therefore, such a nonhomogeneous model is necessary for better understanding of the mechanical behavior of cartilage.  相似文献   

4.
The strain and strain-rate-dependent response of articular cartilage in unconfined compression was studied theoretically. The transient stress and stiffness of cartilage were determined for strain rates ranging from zero to infinity. It is shown, for a given compressive strain, that the axial stress initially increases quickly as a function of strain rate, and then increases progressively more slowly towards the stress corresponding to the instantaneous response. The volume change of the tissue does not give its transient stiffness uniquely, because of the strong strain-rate dependence. The variation of tissue stiffness is primarily determined by the transient stiffness of the radial fibrils. Load sharing between the solid matrix and fluid pressurization also depends on the strain rate. At 15% axial compression, the matrix bears more than 80% of the applied load at a strain rate of 0.005%/s, while the fluid pressurization contributes more than 80% of the load at a strain rate of 0.15%/s. These results show the interplay between fibril reinforcement and fluid pressurization in articular cartilage: the fluid drives fibril stiffening which in turn produces high pore pressure at high strain rates.As a secondary objective of the present work, a fibrillar continuum element was formulated to replace the fibrillar spring element used previously in fibril-reinforced modeling, in order to eliminate the deformation incompatibility between the spring system and the nonfibrillar matrix. The results obtained using the two fibrillar elements were compared with the closed-form solutions for the static and instantaneous responses for the case of large deformation. It was found for unconfined compression that using the spring elements did not generally result in greater numerical errors than using the fibrillar continuum elements.  相似文献   

5.
Mechanical behavior of articular cartilage was characterized in unconfined compression to delineate regimes of linear and nonlinear behavior, to investigate the ability of a fibril-reinforced biphasic model to describe measurements, and to test the prediction of biphasic and poroelastic models that tissue dimensions alter tissue stiffness through a specific scaling law for time and frequency. Disks of full-thickness adult articular cartilage from bovine humeral heads were subjected to successive applications of small-amplitude ramp compressions cumulating to a 10 percent compression offset where a series of sinusoidal and ramp compression and ramp release displacements were superposed. We found all equilibrium behavior (up to 10 percent axial compression offset) to be linear, while most nonequilibrium behavior was nonlinear, with the exception of small-amplitude ramp compressions applied from the same compression offset. Observed nonlinear behavior included compression-offset-dependent stiffening of the transient response to ramp compression, nonlinear maintenance of compressive stress during release from a prescribed offset, and a nonlinear reduction in dynamic stiffness with increasing amplitudes of sinusoidal compression. The fibril-reinforced biphasic model was able to describe stress relaxation response to ramp compression, including the high ratio of peak to equilibrium load. However, compression offset-dependent stiffening appeared to suggest strain-dependent parameters involving strain-dependent fibril network stiffness and strain-dependent hydraulic permeability. Finally, testing of disks of different diameters and rescaling of the frequency according to the rule prescribed by current biphasic and poroelastic models (rescaling with respect to the sample's radius squared) reasonably confirmed the validity of that scaling rule. The overall results of this study support several aspects of current theoretical models of articular cartilage mechanical behavior, motivate further experimental characterization, and suggest the inclusion of specific nonlinear behaviors to models.  相似文献   

6.
Mapping the depth dependence of shear properties in articular cartilage   总被引:1,自引:1,他引:0  
Determining the depth dependence of the shear properties of articular cartilage is essential for understanding the structure-function relation in this tissue. Here, we measured spatial variations in the shear modulus G of bovine articular cartilage using a novel technique that combines shear testing, confocal imaging and force measurement. We found that G varied by up to two orders of magnitude across a single sample, exhibited a global minimum 50-250 microm below the articular surface in a region just below the superficial zone and was roughly constant at depths > 1000 microm (the "plateau region"). For plateau strains gamma(plateau) approximately 0.75% and overall compressive strains epsilon approximately 5%, G(min) and G(plateau) were approximately 70 and approximately 650 kPa, respectively. In addition, we found that the shear modulus profile depended strongly on the applied shear and axial strains. The greatest change in G occurred at the global minimum where the tissue was highly nonlinear, stiffening under increased shear strain, and weakening under increased compressive strain. Our results can be explained through a simple thought model describing the observed nonlinear behavior in terms of localized buckling of collagen fibers and suggest that compression may decrease the vulnerability of articular cartilage to shear-induced damage by lowering the effective strain on individual collagen fibrils.  相似文献   

7.
BACKGROUND: Despite being the stiffest airway of the bronchial tree, the trachea undergoes significant deformation due to intrathoracic pressure during breathing. The mechanical properties of the trachea affect the flow in the airway and may contribute to the biological function of the lung. METHOD: A Fung-type strain energy density function was used to investigate the nonlinear mechanical behavior of tracheal cartilage. A bending test on pig tracheal cartilage was performed and a mathematical model for analyzing the deformation of tracheal cartilage was developed. The constants included in the strain energy density function were determined by fitting the experimental data. RESULT: The experimental data show that tracheal cartilage is a nonlinear material displaying higher strength in compression than in tension. When the compression forces varied from -0.02 to -0.03N and from -0.03 to -0.04N, the deformation ratios were 11.03+/-2.18% and 7.27+/-1.59%, respectively. Both were much smaller than the deformation ratios (20.01+/-4.49%) under tension forces of 0.02 to 0.01N. The Fung-type strain energy density function can capture this nonlinear behavior very well, whilst the linear stress-strain relation cannot. It underestimates the stability of trachea by exaggerating the displacement in compression. This study may improve our understanding of the nonlinear behavior of tracheal cartilage and it may be useful for the future study on tracheal collapse behavior under physiological and pathological conditions.  相似文献   

8.
9.
The effects of mechanical compression of calf cartilage explants on the catabolism and loss into the medium of proteoglycans and proteins radiolabeled with [35S]sulfate and [3H]proline were examined. A single 2- or 12-h compression of 3-mm diameter cartilage disks from a thickness of 1.25 to 0.50 mm, or slow cyclic compression (2 h on/2 h off) from 1.25 mm to 1.00, 0.75, or 0.50 mm for 24 h led to transient alterations and/or sustained increases in loss of radiolabeled macromolecules. The effects of imposing or removing loads were consistent with several compression-induced physical mediators including fluid flow, diffusion, and matrix disruption. Cyclic compression induced convective fluid flow and enhanced the loss of 35S- and 3H-labeled macromolecules from tissue into medium. In contrast, prolonged static compression induced matrix consolidation and appeared to hinder the diffusional transport and loss of 35S- and 3H-labeled macromolecules. Since high amplitude cyclic compression led to a sustained increase in the rate of loss of 3H- and 35S-labeled macromolecules that was accompanied by an increase in the rate of loss of [3H]hydroxyproline residues and an increase in tissue hydration, such compression may have caused disruption of the collagen meshwork. The 35S-labeled proteoglycans lost during such cyclic compression were of smaller average size than those from controls, but contained a similarly low proportion (approximately 15%) that could form aggregates with excess hyaluronate and link protein. The size distribution and aggregability of the remaining tissue proteoglycans and 35S-labeled proteoglycans were not markedly affected. The loss of tissue proteoglycan paralleled the loss of 35S-labeled macromolecules. This study provides a framework for elucidating the biophysical mechanisms involved in the redistribution, catabolism, and loss of macromolecules during cartilage compression.  相似文献   

10.
Very limited information is currently available on the constitutive modeling of the tensile response of articular cartilage and its dynamic modulus at various loading frequencies. The objectives of this study were to (1) formulate and experimentally validate a constitutive model for the intrinsic viscoelasticity of cartilage in tension, (2) confirm the hypothesis that energy dissipation in tension is less than in compression at various loading frequencies, and (3) test the hypothesis that the dynamic modulus of cartilage in unconfined compression is dependent upon the dynamic tensile modulus. Experiment 1: Immature bovine articular cartilage samples were tested in tensile stress relaxation and cyclical loading. A proposed reduced relaxation function was fitted to the stress-relaxation response and the resulting material coefficients were used to predict the response to cyclical loading. Adjoining tissue samples were tested in unconfined compression stress relaxation and cyclical loading. Experiment 2: Tensile stress relaxation experiments were performed at varying strains to explore the strain-dependence of the viscoelastic response. The proposed relaxation function successfully fit the experimental tensile stress-relaxation response, with R2 = 0.970+/-0.019 at 1% strain and R2 = 0.992+/-0.007 at 2% strain. The predicted cyclical response agreed well with experimental measurements, particularly for the dynamic modulus at various frequencies. The relaxation function, measured from 2% to 10% strain, was found to be strain dependent, indicating that cartilage is nonlinearly viscoelastic in tension. Under dynamic loading, the tensile modulus at 10 Hz was approximately 2.3 times the value of the equilibrium modulus. In contrast, the dynamic stiffening ratio in unconfined compression was approximately 24. The energy dissipation in tension was found to be significantly smaller than in compression (dynamic phase angle of 16.7+/-7.4 deg versus 53.5+/-12.8 deg at 10(-3) Hz). A very strong linear correlation was observed between the dynamic tensile and dynamic compressive moduli at various frequencies (R2 = 0.908+/-0.100). The tensile response of cartilage is nonlinearly viscoelastic, with the relaxation response varying with strain. A proposed constitutive relation for the tensile response was successfully validated. The frequency response of the tensile modulus of cartilage was reported for the first time. Results emphasize that fluid-flow dependent viscoelasticity dominates the compressive response of cartilage, whereas intrinsic solid matrix viscoelasticity dominates the tensile response. Yet the dynamic compressive modulus of cartilage is critically dependent upon elevated values of the dynamic tensile modulus.  相似文献   

11.
The mechanical environment is an important factor affecting the maintenance and adaptation of articular cartilage, and thus the function of the joint and the progression of joint degeneration. Recent evidence suggests that cartilage deformation caused by mechanical loading is directly associated with deformation and volume changes of chondrocytes. Furthermore, in vitro experiments have shown that these changes in the mechanical states of chondrocytes correlate with a change in the biosynthetic activity of cartilage cells. The purpose of this study was to apply our knowledge of contact forces within the feline patellofemoral joint to quantify chondrocyte deformation in situ under loads of physiological magnitude. A uniform, static load of physiological magnitude was applied to healthy articular cartilage still fully intact and attached to its native bone. The compressed cartilage was then chemically fixed to enable the evaluation of cartilage strain, chondrocyte deformation and chondrocyte volumetric fraction. Patella and femoral groove articular cartilages differ in thickness, chondrocyte aspect ratio, and chondrocyte volumetric fraction in both magnitude and depth distribution. Furthermore, when subjected to the same compressive loads, changes to all of these parameters differ in magnitude and depth distribution between patellar and femoral groove articular cartilage. This evidence suggests that significant chondrocyte deformation likely occurs during in vivo joint loading, and may influence chondrocyte biosynthetic activity. Furthermore, we hypothesise that the contrasts between patella and femoral groove cartilages may explain, in part, the site-specific progression of osteoarthritis in the patellofemoral joint of the feline anterior cruciate ligament transected knee.  相似文献   

12.
Collagen fibril reinforcement was incorporated into a nonlinear poroelastic model for articular cartilage in unconfined compression. It was found that the radial fibrils play a predominant role in the transient mechanical behavior but a less important role in the equilibrium response of cartilage. The radial fibrils are in tension and can be highly stressed during compression, in contrast to low compressive stresses in all directions for the proteoglycan matrix after a small initial compression. The strain dependent fibril stiffening produces strong nonlinear transient response; the fibrils provide extra stiffness to balance a rising fluid pressure and to restrain stress increase in the proteoglycans. The fibril reinforcement, induced by the fluid pressure and flow, also accounts for a complex pattern of strain-magnitude and strain-rate dependence of cartilage stiffness.  相似文献   

13.
Macroscopic structural damage to the cartilage articular surface can occur due to slicing in surgery, cracking in mechanical trauma, or fibrillation in early stage osteoarthrosis. These alterations may render cartilage matrix and chondrocytes susceptible to subsequent mechanical injury and contribute to progression of degenerative disease. To examine this hypothesis, single 300 microm deep vertical slices were introduced across a diameter of the articular surface of osteochondral explant disks on day 6 after dissection. Then a single uniaxial unconfined ramp compression at 7 x 10(-5) or 7 x 10(-2) s(-1) strain rate to a peak stress of 3.5 or 14 MPa was applied on day 13 during which mechanical behavior was monitored. Effects of slices alone and together with compression were measured in terms of explant swelling and cell viability on days 10 and 17. Slicing alone induced tissue swelling without significant cell death, while compression alone induced cell death without significant tissue swelling. Under low strain rate loading, no differences in the response to injurious compression were found between sliced and unsliced explants. Under high strain rate loading, slicing rendered cartilage more easily compressible and appeared to slightly reduce compression-induced cell and matrix injury. Findings highlight microphysical factors important to cartilage mechanical injury, and suggest ways that macroscopic structural damage may accelerate or, in certain cases, possibly slow the progression of cartilage degeneration.  相似文献   

14.
An automated approachfor measuring in situ two-dimensional strain fields was developed and validated for its application to cartilage mechanics. This approach combines video microscopy, optimized digital image correlation (DIC), thin-plate spline smoothing (TPSS) and generalized cross-validation (GCV) techniques to achieve the desired efficiency and accuracy. Results demonstrate that sub-pixel accuracies can be achieved for measuring tissue displacements with this methodology with a measurement uncertainty ranging from 0.25 to 0.30 pixels. The deformational gradients (from which the strains are determined) can be evaluated directly using the optimized DIC, with a measurement uncertainty of 0.017 to approximately 0.032. In actual measurements of strain in cartilage, TPSS and differentiation can be used to achieve a more accurate measurement of the gradients from the displacement data. Using this automated approach, the two-dimensional strain fields inside immature bovine carpometacarpal joint cartilage specimens under unconfined compression were characterized (n=21). The depth-dependent apparent elastic modulus and Poisson's ratio were also determined and found to be smallest at the articular surface and increasing with depth. The apparent Poisson's ratio is found to decrease with increasing compressive strain, with values as low as 0.01 observed near the articular surface at 25% compression. The variation of the apparent Poisson's ratio with depth is found to be consistent with a theoretical model of cartilage which accounts for the disparity in its tensile and compressive moduli.  相似文献   

15.
A strain energy function for finite deformations is developed that has the capability to describe the nonlinear, anisotropic, and asymmetric mechanical response that is typical of articular cartilage. In particular, the bimodular feature is employed by including strain energy terms that are only mechanically active when the corresponding fiber directions are in tension. Furthermore, the strain energy function is a polyconvex function of the deformation gradient tensor so that it meets material stability criteria. A novel feature of the model is the use of bimodular and polyconvex "strong interaction terms" for the strain invariants of orthotropic materials. Several regression analyses are performed using a hypothetical experimental dataset that captures the anisotropic and asymmetric behavior of articular cartilage. The results suggest that the main advantage of a model employing the strong interaction terms is to provide the capability for modeling anisotropic and asymmetric Poisson's ratios, as well as axial stress-axial strain responses, in tension and compression for finite deformations.  相似文献   

16.
The determination of valid stress-strain relations for articular cartilage under finite deformation conditions is a prerequisite for constructing models for synovial joint lubrication. Under physiological conditions of high strain rates and/or high stresses in the joint, large strains occur in cartilage. A finite deformation theory valid for describing cartilage, as well as other soft hydrated connective tissues under large loads, has been developed. This theory is based on the choice of a specific Helmholtz energy function which satisfies the generalized Coleman-Noll (GCN0) condition and the Baker-Ericksen (B-E) inequalities established in finite elasticity theory. In addition, the finite deformation biphasic theory includes the effects of strain-dependent porosity and permeability. These nonlinear effects are essential for properly describing the biomechanical behavior of articular cartilage, even when strain rates are low and strains are infinitesimal. The finite deformation theory describes the large strain behavior of cartilage observed in one-dimensional confined compression experiments at equilibrium, and it reduces to the linear biphasic theory under infinitesimal strain and slow strain rate conditions. Using this theory, we have determined the material coefficients of both human and bovine articular cartilages under large strain conditions at equilibrium. The theory compares very well with experimental results.  相似文献   

17.
This biomechanical study reports strain gradients in patellofemoral joint cross-sections of seven porcine specimens in response to 1% unconfined axial compression subsequent to specific amounts of off-set strain. Strain distributions were quantified with a customized laser-based electronic speckle pattern interferometry (ESPI) system in a non-contact manner, delivering high-resolution, high-sensitivity strain maps over entire patellofemoral cartilage cross-sections. Strain reports were evaluated to determine differences in strain magnitudes between the superficial, middle, and deep cartilage layers in femoral and patellar cartilage. In addition, the effect of 5%, 10%, 15%, and 20% off-set strain on depth-dependent strain gradients was quantified. Regardless of the amount of off-set strain, the superficial layer of femoral cartilage absorbed the most strain, and the deep layer absorbed the least strain. These depth-dependent strain gradients were most pronounced for 5% off-set strain, at which the superficial layer absorbed on average 5.7 and 23.7 times more strain as compared to the middle and deep layers, respectively. For increased off-set strain levels, strain gradients became less pronounced. At 20% off-set strain, differences in layer-specific strain were not statistically significant, with the superficial layer showing a 1.4 fold higher strain as the deep layer. Patellar cartilage exhibited similar strain gradients and effects of off-set strain, although the patellar strain was on average 19% larger as compared to corresponding femoral strain reports. This study quantified for the first time continuous strain gradients over patellofemoral cartilage cross-sections. Next to provision of a detailed functional characterization of normal diarthrodial joints, this novel experimental approach holds considerable attraction to investigate joint degenerative processes.  相似文献   

18.
Bone mechanical properties are typically evaluated at relatively low strain rates. However, the strain rate related to traumatic failure is likely to be orders of magnitude higher and this higher strain rate is likely to affect the mechanical properties. Previous work reporting on the effect of strain rate on the mechanical properties of bone predominantly used nonhuman bone. In the work reported here, the effect of strain rate on the tensile and compressive properties of human bone was investigated. Human femoral cortical bone was tested longitudinally at strain rates ranging between 0.14-29.1 s(-1) in compression and 0.08-17 s(-1) in tension. Young's modulus generally increased, across this strain rate range, for both tension and compression. Strength and strain (at maximum load) increased slightly in compression and decreased (for strain rates beyond 1 s(-1)) in tension. Stress and strain at yield decreased (for strain rates beyond 1 s(-1)) for both tension and compression. In general, there seemed to be a relatively simple linear relationship between yield properties and strain rate, but the relationships between postyield properties and strain rate were more complicated and indicated that strain rate has a stronger effect on postyield deformation than on initiation of yielding. The behavior seen in compression is broadly in agreement with past literature, while the behavior observed in tension may be explained by a ductile to brittle transition of bone at moderate to high strain rates.  相似文献   

19.
M Wong  M Siegrist  X Cao 《Matrix biology》1999,18(4):391-399
In this study, we investigated the biosynthetic response of full thickness, adult bovine articular cartilage explants to 45 h of static and cyclic unconfined compression. The cyclic compression of articular cartilage resulted in a progressive consolidation of the cartilage matrix. The oscillatory loading increased protein synthesis ([35S]methionine incorporation) by as much as 50% above free swelling control values, but had an inhibitory influence on proteoglycan synthesis ([35SO4] incorporation). As expected, static compression was associated with a dose-dependent decrease in biosynthetic activity. ECM oligomeric proteins which were most affected by mechanical loading were fibronectin and cartilage oligomeric matrix protein (COMP). Static compression at all amplitudes caused a significant increase in fibronectin synthesis over free swelling control levels. Cyclic compression of articular cartilage at 0.1 Hz and higher was consistently associated with a dramatic increase in the synthesis of COMP as well as fibronectin. The biosynthetic activity of chondrocytes appears to be sensitive to both the frequency and amplitude of the applied load. The results of this study support the hypothesis that cartilage tissue can remodel its extracellular matrix in response to alterations in functional demand.  相似文献   

20.
The deformational behavior of articular cartilage has been investigated in confined and unconfined compression experiments and indentation tests, but to date there exist no reliable data on the in situ deformation of the cartilage during static loading. The objective of the current study was to perform a systematic study into cartilage compression of intact human femoro-patellar joints under short- and long-term static loading with MR imaging. A non-metallic pneumatic pressure device was used to apply loads of 150% body weight to six joints within the extremity coil of an MRI scanner. The cartilage was delineated during the compression experiment with previously validated 2D and 3D fat-suppressed gradient echo sequences. We observed a mean (maximal) in situ deformation of 44% (57%) in patellar cartilage after 32 h of loading (mean contact pressure 3.6 MPa), the femoral cartilage showing a smaller amount of deformation than the patella. However, only around 7% of the final deformation (3% absolute deformation) occurred during the first minute of loading. A 43% fluid loss from the interstitial patellar matrix was recorded, the initial fluid flux being 0.217 +/- 0.083 microm/s, and a high inter-individual variability of the deformational behavior (coefficients of variation 11-38%). In conjunction with finite-element analyses, these data may be used to compute the load partitioning between the solid matrix and fluid phase, and to elucidate the etiologic factors relevant in mechanically induced osteoarthritis. They can also provide direct estimates of the mechanical strain to be encountered by cartilage transplants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号