首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Bargonetti  P Z Wang    R P Novick 《The EMBO journal》1993,12(9):3659-3667
We have prepared and analyzed two types of gene fusion between the replication initiator gene, repC, and the reporter gene, blaZ, in order to investigate the relationship between pT181 plasmid copy number and RepC initiator protein production. A series of pT181 copy mutant plasmids, with copy numbers ranging from 70 to 800 copies per cell, were analyzed. In one type of gene fusion used in this study, blaZ was translationally coupled to the C-terminal end of the repC coding sequence such that native forms of both proteins were produced. This gene fusion arrangement, which permitted monitoring of RepC production (as BlaZ activity) by plasmids using the protein for their own replication, demonstrated a linear relationship, with one exception, between RepC production and plasmid copy number over a 20-fold range. In the second type of fusion, blaZ was translationally fused to the C-terminal end of repC. As the translational fusion did not produce active RepC protein, the fusion-containing pT181 derivatives were maintained in a strain which provided RepC in trans, and were thus analyzed at constant copy number. In contrast to previous analyses of this type, our translational fusion constructs expressed repC at levels proportional to the copy numbers of the plasmids from which the fusions were prepared. Using these data, we have calculated a minimum figure for the number of RepC molecules synthesized per replication event.  相似文献   

2.
The replication of staphylococcal plasmid pT181 is indirectly controlled at the level of the synthesis of its replication initiator, RepC. As a result, high levels of RepC synthesis per plasmid copy were expected to lead to autocatalytic plasmid replication, which secondarily would affect host physiology. Surprisingly, RepC overexpression was found to lead to a rapid decrease in pT181 copy number and replication rate. These effects depended on the ratio of RepC lo the PT181 replication origin rather than on the absolute amount of RepC in the cell. In a wild-type host, the increase in RepC/plasmid copy also inhibited chromosome replication and cell division. The changes in host physiology did not play any role in the decrease in pT181 replication caused by RepC overexpression since pT181 replication responded in the same way in a host mutant insensitive to the effects of RepC induction. These results suggest that pT181, the prototype of an entire class of plasmids from Gram-positive bacteria, responds to overexpression of its replication initiator by a decrease in plasmid replication.  相似文献   

3.
pT181 is a fully sequenced 4.4-kb 20 copy Tcr plasmid from Staphylococcus aureus. Its replication system involves a unique unidirectional origin embedded in the coding sequence for a plasmid-determined protein, RepC, that is required for initiation. When joined to a 55 copy carrier plasmid, pE194, pT181 excludes autonomous isologous replicons by inhibiting their replication. Two types of spontaneous pT181 copy mutants have been isolated, one that eliminates sensitivity to this inhibition and another that does not. A spontaneous 180-bp deletion, delta 144, eliminates both the inhibitory activity and sensitivity to it. This deletion increases copy number by 50-fold and RepC production by at least 10-fold. It is located directly upstream from the repC coding sequence and the deletion-bearing plasmid supports the replication of inhibitor-sensitive plasmids in cells containing active inhibitor. This effect is probably due to the overproduction of RepC by the delta 144 plasmid. On the basis of these results, it is suggested that RepC synthesis is negatively controlled by an inhibitor that is encoded directly upstream from the repC coding sequence and acts as a tareget set in the same region. It is likely, therefore, that pT181 replication rate is determined by the level of RepC.  相似文献   

4.
Serban Iordanescu 《Plasmid》1983,10(2):130-137
A chromosomal mutation leading to an important increase in the copy number of plasmid pT181 and its derivatives has been isolated from Staphylococcus aureus strain 8325. The amplification effect in the mutant strain SA1350 was found to be specific for plasmids of the Inc3 group, to which belongs pT181. There are some other differences in the behavior of Inc3 plasmids between SA1350 and 8325, including stable maintenance in SA1350 at high copy number of temperature-sensitive replication mutants at restrictive temperatures, and altered incompatibility properties. Derivatives of SA1350 carrying only Inc3 plasmid mutants with high copy numbers (Cop mutants) could not be obtained, suggesting a lethal runaway plasmid replication in this situation. SA1350 expressed also a temperature-sensitive phenotype. The relationship of this character to the plaC1 mutation determining the amplification of Inc3 plasmids has not yet been elucidated.  相似文献   

5.
S J Projan  R P Novick 《Plasmid》1984,12(1):52-60
An experimental analysis of the concept that incompatible plasmids occupy a common intracellular pool from which copies are drawn at random for replication and assortment is presented. Intrapool variations in an incompatible heteroplasmid strain are inevitable and it is shown that these variations can be exploited by differential selection to amplify one plasmid at the expense of the other. Constant overall copy number is demonstrated for isogenic wild-type replicons and also for isogenic copy mutants whose copy numbers are so great that segregational incompatibility cannot be measured. In the test system used, that of the Staphylococcus aureus plasmid pT181, the rate of replication is probably determined by the availability of a trans-active initiator protein, RepC. In heteroplasmid strains containing wild-type and dominant copy mutant plasmids, although intrapool variation occurs, the total copy number is not constant but varies as a consequence of selection for or against the mutant plasmid. This is because all of the RepC is synthesized from the mutant plasmid (the wild-type is hyper-repressed) and therefore the selection affects the supply of RepC at the same time that it affects the copy number of the plasmid. None of these effects are seen with single plasmids or with compatible pairs.  相似文献   

6.
RepC is rate limiting for pT181 plasmid replication   总被引:13,自引:0,他引:13  
The effect on pT181 plasmid replication of the concentration of the plasmid-coded initiator protein, RepC, has been analyzed. In one type of experiment, plasmid replication was found to stop immediately after the addition of an inhibitory concentration of chloramphenicol (Cm) to growing cultures. Chromosomal replication showed the slow turnoff that is usual for Cm inhibition. Because plasmid replication rate is determined autogenously, no host factor can be rate limiting, suggesting that the specific factor affected is Rep C. In another type of experiment, we constructed a translational fusion between the repC coding sequence and a translationally inducible Cm-acetylase gene, cat-86, using pUB110 as the carrier replicon. The fusion plasmid showed an eightfold amplification of its own copy number and a similar amplification of a co-resident pT181 plasmid upon Cm induction. The amplified plasmids did not show autocatalytic runaway replication but rather established stable elevated copy numbers, indicating the existence of a secondary level of regulation. These results suggest that RepC is rate limiting for pT181 replication and support the hypothesis that pT181 replication is regulated at the level of RepC synthesis. The nature of the secondary regulation is unknown.  相似文献   

7.
Staphylococcus aureus chromosomal mutants which maintain pT181 and related plasmids at a much reduced copy number but which do not affect the replication of other plasmids have been isolated. The origin of replication and the initiator protein of the affected plasmids are the only elements required for the response to these mutations. The host mutations do not interfere with the pT181 replication control mechanism.  相似文献   

8.
9.
10.
Serban Iordanescu 《Plasmid》1986,15(3):191-198
The deletion of the 560-bp HindIII C fragment from pT181 derivatives does not change the stability or copy number of the plasmid but affects its ability to compete with undeleted, incompatible plasmids for maintenance in the host cell. The disadvantage of the deleted plasmids seems to be manifested at the level of replication. It results that for plasmid pT181 a sequence dispensable for autonomous maintenance and replication control could affect the outcome of the competition between autonomous, incompatible plasmids.  相似文献   

11.
Recombinant plasmids carrying apparently the complete genome of a small staphylococcal plasmid, pT181, or of its temperature-sensitive replication mutant, pSA0301, were isolated and characterized; in these recombinants, pT181 or pSA0301 were considered as “integrated” into the other plasmid, inasmuch as they seem to have a subsidiary role in the replication of the respective recombinant plasmids. Using these recombinants, the incompatibility relationships between integrated and autonomous forms of the same plasmid were studied. The results obtained showed that, although integrated plasmids express their incompatibility toward autonomous ones, they are not susceptible to the incompatibility manifested by an autonomous or another integrated plasmid. No differences were observed between pT181 and pSA0301 in their response to the incompatibility manifested by recombinant plasmids. The expression of the incompatibility of an integrated plasmid did not require the function of the repC gene, involved in plasmid autonomous replication. Moreover, the pT181 repC+ gene seems not to be expressed when pT181 is integrated into another plasmid in that the integrated form does not complement autonomous pSA0301 for replication at nonpermissive temperature.  相似文献   

12.
pT181 is a Staphylococcus aureus rolling circle plasmid that regulates its replication by controlling the synthesis of its dimeric initiator protein RepC/C and by inactivating the protein following its use in replication (A. Rasooly and R. P. Novick, Science 262:1048-1050, 1993). This inactivation consists of the addition of an oligonucleotide, representing several nucleotides immediately 3' to the initiation nick site, to the active site tyrosine of one of the two subunits, generating a heterodimer, RepC/C*. Previous results suggested that the inactive form was metabolically stable and was present at a much higher level than the active form (A. Rasooly and R. P. Novick, Science 262:1048-1050, 1993). In the present study we have measured total RepC antigen as a function of plasmid copy number and have analyzed the interaction of the two forms. We find that pT181-containing staphylococci contain approximately one RepC dimer per plasmid copy over a 50-fold range of copy numbers. This is consistent with previous measurements of the rate of RepC synthesis, which suggested that one RepC dimer is synthesized per replication event (J. Bargonetti, P.-Z. Wang and R. P. Novick, EMBO J. 12:3659-3667, 1993). The RepC/C* heterodimer, which is inactive for replication, is a competitive inhibitor of the replication and the topoisomerase-like and cruciform-enhancing activities of the native protein. These results suggest that the inactive form may have a specific regulatory role in vivo. Since the known plasmid-determined controls, which maintain a constant plasmid copy number, are designed to ensure the synthesis of one RepC/C dimer per plasmid replication event, it is difficult to envision any role for yet another negative regulator of replication. Conceivably, under conditions where the initiator is overproduced, such as in the absence of the normal antisense regulation of initiator production, RepC/C* could serve as a fail-safe means of preventing autocatalytic replication.  相似文献   

13.
pT181 and related plasmids of gram-positive bacteria replicate by a rolling-circle mechanism. The replication initiator protein of pT181, RepC, has origin-specific nicking-closing activities. Replication of the plasmid pT181 leading strand initiates by covalent extension of the RepC-generated nick, and the origin of replication contains signals for both initiation and termination of DNA replication. We have investigated the sequence requirements for the initiation and termination steps by using plasmids containing two pT181 origins. In vitro replication experiments showed that 18- and 24-bp synthetic oligonucleotides containing the RepC nick site were active in the termination of replication. However, initiation of replication required a larger region which also includes the RepC binding site. Plasmids containing the 18- and 24-bp region were also found to be nicked by the RepC protein. Our results demonstrate that sequence requirements for initiation and termination of pT181 replication overlap, but while the RepC binding site is required for initiation, it is dispensable for termination.  相似文献   

14.
15.
Copy-number mutants of Staphylococcus aureus macrolide-lincosamide-streptogramin B (MLS) resistance plasmid pT48 were isolated by their resistance to the non-inducing macrolide, tylosin. One mutant plasmid, pcopD3, showed a three- to five-fold cis-dominant increase in copy number, and nucleotide sequence analysis revealed that the mutant had a single base change within the replication region. All other pT48 mutants examined had the unusual phenotype of increased plasmid multimerization and elevated copy number. These mutants were effective in trans and DNA sequencing showed that plasmids with this phenotype were deleted in one of two ways. The deletions caused similar alterations to the C-terminus of the wild-type pT48 Rep protein. The two types of mutant Rep proteins terminate with the same pentapeptide sequence: Ala-Asn-Glu-Ile-Asp. The multimerization phenotype of these mutants can be explained by defective termination of rolling-circle type replication.  相似文献   

16.
Translational control by antisense RNA in control of plasmid replication   总被引:3,自引:0,他引:3  
K Nordstr?m  E G Wagner  C Persson  P Blomberg  M Ohman 《Gene》1988,72(1-2):237-240
Control of replication of plasmids involves two processes: measurement of the copy number of the plasmid and adjustment of the replication frequency accordingly. For both these processes IncFII plasmids use an antisense RNA (CopA RNA) that forms a duplex with the upstream region (CopT) of the mRNA of the rate-limiting RepA protein. The kinetics of duplex formation was measured in vitro for the wild type and for a cop mutant plasmid; the mutant showed a reduction in the second-order rate constant for the formation of the RNA duplex and a similar increase in copy number. Hence, the kinetics of duplex formation and the concentration of CopA RNA determines the copy number of the plasmid.  相似文献   

17.
Specificity of RepC protein in plasmid pT181 DNA replication   总被引:6,自引:0,他引:6  
The plasmid pT181 of Staphylococcus aureus consists of 4437 base pairs and encodes resistance to tetracycline. Initiation of pT181 DNA replication specifically requires the plasmid-encoded initiator protein, RepC. The initiator protein binds specifically to a 32-base pair sequence within the pT181 origin of replication. RepC protein also has a nicking-closing activity that is specific for the pT181 origin. Replication of pT181 initiates by covalent extension of the nick and proceeds by a rolling circle mechanism. Two other small, multicopy plasmids pC221 and pS194 belong to the pT181 family and have common structural organization and replication properties. The replication proteins and replication origins of these plasmids have extensive sequence homologies, although they belong to different incompatibility groups. In spite of this homology, the replication proteins and replication origins of these three plasmids do not show any cross-reactivity in vivo. We have carried out a series of in vitro experiments to determine the specificity of pT181-encoded initiator protein, RepC. DNA binding experiments showed that although the binding of RepC to the pT181 origin was very efficient, little or no binding was seen with pC221 and pS194 origins. The nicking-closing activity of RepC was found to be equally efficient with the pC221 and pS194 plasmids. The plasmids pC221 and pS194 replicated efficiently in a RepC-dependent in vitro system. However, replication of these plasmids was greatly reduced in the presence of a competing pT181 origin. The results presented here suggest that nicking-closing by RepC at the origin is not sufficient for maximal replication and that tight binding of RepC to the origin plays an important role in the initiation of DNA replication.  相似文献   

18.
The random distribution of ColE1 plasmids between the daughter cells at cell division introduces large copy number variations. Statistic variation associated with limited copy number in single cells also causes fluctuations to emerge spontaneously during the cell cycle. Efficient replication control out of steady state is therefore important to tame such stochastic effects of small numbers. In the present model, the dynamic features of copy number control are divided into two parts: first, how sharply the replication frequency per plasmid responds to changes in the concentration of the plasmid-coded inhibitor, RNA I, and second, how tightly RNA I and plasmid concentrations are coupled. Single (hyperbolic)- and multiple (exponential)-step inhibition mechanisms are compared out of steady state and it is shown how the response in replication frequency depends on the mode of inhibition. For both mechanisms, sensitivity of inhibition is “bought” at the expense of a rapid turnover of a replication preprimer, RNA II. Conventional, single-step, inhibition kinetics gives a sloppy replication control even at high RNA II turnover rates, whereas multiple-step inhibition has the potential of working with unlimited precision. When plasmid concentration changes rapidly, RNA I must be degraded rapidly to be “up to date” with the change. Adjustment to steady state is drastically impaired when the turnover rate constants of RNA I decrease below certain thresholds, but is basically unaffected for a corresponding increase. Several features of copy number control that are shown to be crucial for the understanding of ColE1-type plasmids still remain to be experimentally characterized. It is shown how steady-state properties reflect dynamics at the heart of regulation and therefore can be used to discriminate between fundamentally different copy number control mechanisms. The experimental tests of the predictions made require carefully planned assays, and some suggestions for suitable experiments arise naturally from the present work. It is also discussed how the presence of the Rom protein may affect dynamic qualities of copy number control.  相似文献   

19.
Control of pT181 replication II. Mutational analysis.   总被引:25,自引:3,他引:22       下载免费PDF全文
  相似文献   

20.
We present data which indicate that (i) the origin of replication of plasmids pT181 and pC221 can also function as termination signals; (ii) termination of replication occurs when a round of replication initiated either by RepC at the pT181 origin or by RepD at the pC221 origin reaches either of these origins, proving that the two plasmids cross-react for termination of replication; and (iii) the replication initiated at the origin of another staphylococcal plasmid, pE194, does not terminate at the origin of pT181 or pC221, indicating the existence of a specific relationship between the initiation and termination of a replication event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号