首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physical maps of the genome of Moloney murine leukemia virus (M-MLV) DNA were constructed by using bacterial restriction endonucleases. The in vitro-synthesized M-MLV double-stranded DNA was used as the source of the viral DNA. Restriction endonucleases Sal I and Hind III cleave viral DNA at only one site and, thus, generate two DNA fragments. The two DNA fragments generated by Sal I are Sal IA (molecular weight, 3.5 x 10(6)) and Sal IB (molecular weight, 2.4 x 10(6)) and by Hind III are Hind IIIA (molecular weight, 3.6 x 10(6) and Hind IIIB (molecular weight, 2.3 x 10(6)). Restriction endonuclease Bam I generates four fragments of molecular weights of 2.1 x 10(6) (Bam IA), 2 X 10(6) (Bam IB), 1.25 X 10(6) (Bam IC), and 0.24 x 10(6) (Bam ID), whereas restriction endonuclease Hpa I cleaves the M-MLV double-stranded DNA twice to give three fragments of molecular weights of 4.4 x 10(6) (Hpa IA), 0.84 X 10(6) (Hpa IB), and 0.74 x 10(6) (Hpa IC). Digestion of M-MLV double-stranded DNA with restriction endonuclease Sma I produces four fragments of molecular weights of 3.9 x 10(6) (Sma IA), 1.3 X 10(6) (Sma IB), 0.28 X 10(6) (Sma IC), and 0.21 x 10(6) (Sma ID). A mixture of restriction endonucleases Bgl I and Bgl II (Bgl I + II) cleaves the viral DNA at four sites generating five fragments of approximate molecular weights of 2 x 10(6) (Bgl + IIA), 1.75 X 10(6) (Bgl I + IIB), 1.25 X 10(6) (Bgl I + IIC), 0.40 X 10(6) (Bgl I + IID), and 0.31 x 10(6) (Bgl I + IIE). The order of the fragments in relation to the 5' end and 3' end of the genome was determined either by using fractional-length M-MLV double-stranded DNA for digestion by restriction endonucleases or by redigestion of Sal IA, Sal IB, Hind IIIA, and Hind IIIB fragments with other restriction endonucleases. In addition, a number of other restriction endonucleases that cleave in vitro-synthesized M-MLV double-stranded DNA have also been listed.  相似文献   

2.
A restriction endonuclease from Haemophilus influenzae (Hind III) specifically cleaved vaccinia DNA into 14 fragments. The molecular weights of these fragments were determined by gel electrophoresis and ranged from 0.5 x 10(6) to 30 x 10(6). Hind III digestion of the DNA from the WR and CV-1 strains of vaccinia revealed a small molecular difference in one of the resulting fragments. The average molecular weight of the entire vaccinia genome was calculated to be 125 x 10(6).  相似文献   

3.
Characterization of two types of yeast ribosomal DNA genes.   总被引:33,自引:5,他引:28       下载免费PDF全文
The intragenic organization of ribosomal DNA from a diploid strain of Saccharomyces cerevisiae was analyzed by using recombinant DNA molecules constructed in vitro. Restriction analysis of the yeast ribosomal DNA with the EcoRI restriction enzyme indicated that eight restriction fragments were present in the ribosomal DNA of this strain: X' (1.87 X 10(6) daltons), A (1.77 X 10(6) daltons), B (1.48 X 10(6) daltons), C (1.22 X 10(6) daltons), D (0.39 X 10(6) daltons), E (0.36 X 10(6) daltons), F (0.22 X 10(6) daltons), and G (0.17 X 10(6) daltons). These fragments were distributed between two different types of ribosomal DNA genes, which had the restriction maps: (formula: see text) in which the underlined region shows the repeating unit. The diploid yeast strain contained approximately equal amounts of each of these two types of genes. The analysis of the recombinant DNA molecules also indicated that the yeast ribosomal genes are homogeneous and extensively clustered.  相似文献   

4.
5.
Mitochondrial DNA from cultured C13/B4 hamster cells was cleaved by the restriction endonucleases Hpa II, Hind III, Eco RI and Bam HI into 7, 5, 3 and 2 unique fragments, respectively. The summed molecular weights of fragments obtained from electrophoretic mobilities in agarose-ethidium bromide gels (with Hpa I-cleaved T7 DNA as standard) and electron microscopic analysis of fragment classes isolated from gels (with SV40 DNA as standard) were in good agreement with the size of 10.37 +/- 0.22 x 10(6) daltons (15,700 +/- 330 nucleotide pairs) determined for the intact circular mitochondrial genome. Cyclization of all Hind III, Eco RI and Bam HI fragments was observed. A cleavage map containing the 17 restriction sites (+/- 1% s.d.) was constructed by electrophoretic analysis of 32P-labeled single- and double-enzyme digestion products and reciprocal redigestion of isolated fragments. The 7 Hpa II sites were located in one half of the genome. The total distribution of the 17 cleavages around the genome was relatively uniform. The position of the D-loop was determined from its location and expansion on 3 overlapping restriction fragments.  相似文献   

6.
Mitochondrial DNA (mtDNA) from endosymbiote-free stocks of Paramecium tetraurelia was isolated by 2 procedures. The buoyant density of the mtDNA in neutral CsCl was 1.702 gm/cm3, a value consistent with the melting temperature of the mtDNA. Only linear molecules were observed by electron microscopy. These molecules were homogeneous in size with a monomer molecular weight of 25.6 x 10(6) daltons. The size of the mtDNA determined after digestion with the restriction endonucleases EcoRI or Hind III agreed with the value obtained by electron microscopy. These studies also revealed that the digestion pattern of mtDNA from stock 172 differed from that of other 3 stocks (51, 127, 203) examined. Some mtDNA molecules exhibited snapback reassociation following denaturation.  相似文献   

7.
We studied Bacillus thuringiensis var galleriae, strain 612 plasmids. B. thuringiensis cells contain double-stranded plasmid DNA molecules (ranging of about 12% from total DNA content) with buoyant density 1.59 g/cm3. Plasmid DNA content was constant during the exponential and stationary phases of bacterial growth. The plasmid fractions consist of DNA molecules with molecular weights of 5.9 x 10(6), 10.0 x 10(6), and 110.9 x 10(6) daltons (pVD1, pVD2 pVD3, respectively). Endonuclease EcoRI cuts the plasmids pVD2 and pVD3 into two and four fragments, respectivelyy, but pVDI seemed to be resistent to EcoRI treatment. We found that pVD2 and pVD3 plasmids contain a common DNA fragment with the molecular weight of 6.7 x 10(6) dalton as it was shown by restriction analysis. In contrast, the same plasmids contain the common fragment with molecular weight of 7.5 x 10(6) dalton as shown by heteroduplex analysis. Plasmid pVD3 has a transposon-like structure.  相似文献   

8.
A physical map of Neurospora crassa mitochondrial DNA has been constructed using specific fragments obtained with restriction endonucleases. The DNA has 5 cleavage sites for endonuclease Bam HI, 12 for endonuclease Eco RI and more than 30 for endonuclease Hind III. The sequence of the Eco RI and Bam HI fragments has been established by analysis of partial fragments. By digestion of the Eco RI fragments with Bam HI, a complete overlapping map has been constructed. The position of the largest Hind III fragment on this map has also been determined. The map is circular and the added molecular weight of the fragments is 40 - 10(6), which is in good agreement with earlier measurements on intact DNA, using the electron microscope.  相似文献   

9.
Summary Tobacco chloroplast ribosomal RNAs were shown to be hybridized with two EcoRI fragments of tobacco chloroplast DNA. These DNA fragments having molecular weights of 1.9x106 and 2.8x106 daltons were cloned using the bacterial plasmid pMB9 as a vector and E. coli HB101 as host bacteria. The recombinant plasmids containing either or both of these fragments were constructed and characterized.Abbreviations rRNA ribosomal RNA - EDTA ethylenediamine tetraacetic acid - SSC 0.15 M NaCl-0.015 M sodium citrate - EcoRI and HindIII restriction endonucleases isolated from E. coli RY13 and Haemophilus influenzae Rd, respectively  相似文献   

10.
P W Gray  R B Hallick 《Biochemistry》1977,16(8):1665-1671
A physical map of the Euglena gracilis chloroplast genome has been constructed, based on cleavage sites of Euglena gracilis chloroplast DNA treated with bacterial restriction endonucleases. Covalently close, circular chloroplast DNA is cleaved by restriction endonuclease SalI into three fragments and by restriction endonuclease BamHI into six fragments. These nine cleavage sites have been ordered by fragment molecular weight analysis, double digestions, partial digestions, and by digestion studies of isolated DNA fragments. A fragment pattern of the products of EcoRI restriction endonuclease digestion of Euglena chloroplast DNA is also described. One of these fragments has been located on the cleavage site map.  相似文献   

11.
萘质粒ND1.860经限制性核酸内切酶HindⅢ完全消化和部分消化所产生的限制片段,分别在大肠杆菌质粒pBR322中克隆。通过对含有ND1.860HindⅢ片段的17个重组质粒进行限制酶分析,建立了ND1.860质粒的HindⅢ、EcoRⅠ和XbaⅠ种内切酶26个切点的酶切图谱。  相似文献   

12.
It has been proposed that the genome of herpes simplex virus type 1 (HSV-1) consists of two internal unique sequences, S and L, bounded by two sets of redundant sequences (P. Sheldrick and N. Berthelot, 1974). In this arrangement, terminal sequences (TRs and TRl) are repeated in an internal inverted form (IRs and IRl) and delimit S and L. Furthermore, a body of evidence has accumulated that suggests that S and L themselves are inverted, giving rise to four related forms of the HSV genome. In this study the ordering of restruction endonuclease fragments of HSV-1 DNA for physical maps has been studied using molecular hybridization techniques and the cleavage of isolated restriction endonuclease fragments with further restriction endonucleases. Physical maps for the fragments produced by Hind III, Hpa-1, and X. bad have been constructed for the four related forms of the HSV-1 genome. TRs and IRs were found to be between 3.5 x 10(6) and 4.5 x 10(6) daltons, TRl and IRl about 6 x 10(6) daltons, S about 8 x 10(6) to 9 x 10(6) daltons, and L about 6.8 x 10(6) daltons.  相似文献   

13.
Summary Plasmid ColIb (61.5 Mdal) was digested with restriction enzymes EcoRI and HindIII. The DNA digestion products were separated by electrophoresis on 1.2% agarose gels. There were identified 22 fragments of ColIb DNA generated by the endonuclease EcoRI and 21 fragments produced by HindIII. Molecular weights of the fragments were estimated. The total molecular weight of the fragments generated by EcoRI was 61.42 Mdal and for HindIII fragments 62.79 Mdal.  相似文献   

14.
The DNAs of two closely related orthopoxviruses, rabbit poxvirus (RPV) and vaccinia virus (VV), were mapped by overlapping-fragment analysis using restriction endonucleases HindIII and Sst I. The exact arrangement of these fragments was accomplished by total digestion of isolated partial restriction products and by end-fragment determination. RPV and VV DNAs showed identical restriction patterns in an internal region comprising approximately 60% of the genome. The size, by electrophoretical analysis of the RPV DNA, was 118 X 10(6) daltons, some 6 X 10(6) daltons less than VV DNA. The two opposite terminal restriction fragments of RPV DNA cross-hybridized to each other.  相似文献   

15.
The arrangement of EcoRI, Hsu I, and Sal I restriction enzyme sites in the DNA of the B95-8 and W91 isolates of Epstein-Barr virus (EBV) has been determined from the size of the single-enzyme-cleaved fragments and from blot hybridizations that identify which fragments cut from the DNA with one enzyme contain nucleotide sequences in common with fragments cut from the DNA with a second enzyme. The DNA of the B95-8 isolate was the prototype for this study. The data indicate that (i) approximately 95 X 10(6) to 100 X 10(6) daltons of EBV (B95-8) DNA is in a consistent and unique sequence arrangement. (ii) Both termini are variable in length. One end of the molecule after Hsu I endonuclease cleavage consists of approximately 3,000 base pairs, with as many as 10 additional 500-base pair segments. The opposite end of the molecule after Sal I endonuclease cleavage consists of approximately 1,500 base pairs, with as many as 10 additional 500-base pair segments. (iii) The opposite ends of the molecule contain homologous sequences. The high degree of homology between the opposite ends of the molecule and the similarity in size of the "additional" 500-base pair segments suggests that there are identical repeating units at both ends of the DNA. The arrangement of restriction endonuclease fragments of the DNA of the W91 isolate of EBV is similar to that of the B95-8 isolate and differs from the latter in the presence of approximately 7 X 10(6) daltons of "extra" DNA at a single site. Thus, the size of almost all EcoRI, Hsu I, and Sal I fragments of EBV (W91) DNA is identical to that of fragments of EBV (B95-8) DNA. A single EcoRI fragment, C, of EBV (W91) DNA is approximately 7 X 10(6) daltons larger than the corresponding EcoRI fragment of EBV (B95-8) DNA. Digestion of EBV (W91) DNA with Hsu I or Sal I restriction endonucleases produces two fragments (Hsu I D1 and D2 or Sal I G2 and G3) which differ in total size by approximately 7 X 10(6) daltons from the fragments of EBV (B95-8) DNA. Furthermore, the EcoRI, Hsu I, and Sal I fragments of EBV (W91) and (B95-8) DNAs, which are of similar molecular weight, have homologous nucleotide sequences. Moreover, the W91 fragments contain only sequences from a single region of the B95-8 genome. Two lines of evidence indicate that the "extra" sequences present in W91 EcoRI fragment C are viral DNA and not cellular. (i) The molecular weight of the "enlarged" EcoRI C fragment of EBV (W91) DNA is identical to that of the EcoRI C fragment of another isolate of EBV (Jijoye), (ii) The HR-1 clone of Jijoye has previously been shown to contain DNA which is not present in the B95-8 strain but is present in the EcoRI C and Hsu I D2 and D1 fragments of EBV (W91) DNA (N. Raab-Traub, R. Pritchett, and E. Kieff, J. Virol. 27:388-398, 1978).  相似文献   

16.
Plasmid pSL103 was previously constructed by cloning a Trp fragment (approximately 2.3 X 10(6) daltons) from restriction endonuclease EcoRI-digested chromosome DNA of Bacillus pumilus using the neomycin-resistance plasmid pUB110 (approximately 2.8 X 10(6) daltons) as vector and B. subtilis as transformation recipient. In the present study the EcoRI Trp fragment from pSL103 was transferred in vitro to EcoRI fragments of the Bacillus plasmid pPL576 to determine the ability of the plasmid fragments to replicate in B. subtilis. Endonuclease EcoRI digestion of pPL576 (approximately 28 X 10(6) daltons) generated three fragments having molecular weights of about 13 X 13(6) (the A fragment), 9.5 X 10(6) (B fragment, and 6.5 X 10(6) (C fragment). Trp derivatives of pPL576 fragments capable of autonomous replication in B. subtilis contained the B fragment (e.g., pSL107) or both the B and C fragments (e.g., pSL108). Accordingly, the B fragment of pPL576 contains information essential for autonomous replication. pSL107 and pSL108 are compatible with pUB110. Constructed derivatives of the compatible plasmids pPL576 and pUB110, harboring genetically distinguishable EcoRI-generated Trp fragments cloned from the DNA of a B. pumilus strain, exhibited relatively high frequency recombination for a trpC marker when the plasmid pairs were present in a recombination-proficient strain of B. subtilis. No recombination was detected when the host carried the chromosome mutation recE4. Therefore, the recE4 mutation suppresses recombination between compatible plasmids that contain homologous segments.  相似文献   

17.
The major species of unintegrated linear viral DNA identified in chicken embryonic fibroblasts infected with either the avian myeloblastosis-associated viruses (MAV-1, MAV-2) or the standard avian myeloblastosis virus complex (AMV-S) has a mass of 5.3 X 10(6) daltons. An additional minor DNA component observed only in AMV-S-infected cells has a mass of 4.9 X 10(6) daltons. The unintegrated linear viral DNAs and integrated proviruses of MAV-1 and MAV-2 have been analyzed by digestion with the restriction endonucleases EcoRI and HindIII. MAV-2 lacks a HindIII site present in MAV-1. These fragments have been compared to those generated by EcoRI and HindIII digestion of linear viral DNAs of AMV-S. Restriction enzyme digestion of AMV-S viral DNA produced unique fragments not found with either MAV-1 or MAV-2 viral DNAs. The major viral component present in AMV-S stocks has the HindIII restriction pattern of MAV-1. Restriction enzyme analysis of the 5.3 X 10(6)-dalton unintegrated MAV viral DNAs and their integrated proviruses suggests that the DNAs have a direct terminal redundancy of approximately 0.3 megadaltons and integrate colinearly with respect to the unintegrated linear DNA.  相似文献   

18.
Mitochondrial DNA (mtDNA) from endosymbiote-free stocks of Paramecium tetraurelia was isolated by 2 procedures. the buoyant density of the mtDNA in neutral CsCI was 1.702 gm/cm3. a value consistent with the melting temperature of the mtDNA. Only linear molecules were observed by electron microscopy. These molecules were homogeneous in size with a monomer molecular weight of 25.6 × 106 daltons. the size of the mtDNA determined after digestion with the restriction endonucleases EcoRI or Hind III agreed with the value obtained by electron microscopy. These studies also revealed that the digestion pattern of mtDNA from stock 172 differed from that of the other 3 stocks (51, 127. 203) examined. Some mtDNA molecules exhibited snapback reassociation following denaturation.  相似文献   

19.
A model of calculation of molecular weights of fragments EcoRI, Hind III and PvuI is formulated. A restriction site map of factor pAP39 is constructed automatically. Sites to EcoRI and PvuI are distributed in the segment with molecular weight 9.1 MD.  相似文献   

20.
Fragments of guinea pig cytomegalovirus (GPCMV) DNA produced by HindIII or EcoRI restriction endonuclease digestion were cloned into vectors pBR322 and pACYC184, and recombinant fragments representing ca. 97% of the genome were constructed. Hybridization of 32P-labeled cloned and gel-purified HindIII, EcoRI, and XbaI fragments to Southern blots of HindIII-, EcoRI-, and XbaI-cleaved GPCMV DNA verified the viral origin of cloned fragments and allowed construction of HindIII, EcoRI, and XbaI restriction maps. On the basis of the cloning and mapping experiments, the size of GPCMV DNA was calculated to include 239 kilobase pairs, corresponding to a molecular weight of 158 X 10(6). No cross-hybridization between any internal fragments was seen. We conclude that the GPCMV genome consists of a long unique sequence with terminal repeat sequences but without internal repeat regions. In addition, GPCMV DNA molecules exist in two forms. In the predominant form, the molecules demonstrate sequence homology between the terminal fragments; in the minor population, one terminal fragment is smaller by 0.7 X 10(6) daltons and is not homologous with the fragment at the other end of the physical map. The structural organization of GPCMV DNA is unique for a herpesvirus DNA, similar in its simplicity to the structure reported for murine cytomegalovirus DNA and quite dissimilar from that of human cytomegalovirus DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号