首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular dynamics simulations have been used to study structural and dynamic properties of fully hydrated mixed 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) bilayers at 0, 25, 50, 75, and 100 mol % DPPE. Simulations were performed for 50 ns at 350 K and 1 bar for the liquid-crystalline state of the mixtures. Results show that the average area per headgroup reduces from 0.65 +/- 0.01 nm(2) in pure DPPC to 0.52 +/- 0.01 nm(2) in pure DPPE systems. The lipid tails become more ordered with increasing DPPE concentration, resulting in a slight increase in membrane thickness (3.43 +/- 0.01 nm in pure DPPC to 4.00 +/- 0.01 nm in pure DPPE). The calculated area per headgroup and order parameter for pure DPPE deviates significantly from available experimental measurements, suggesting that the force field employed requires further refinement. In-depth analysis of the hydrogen-bond distribution in DPPE molecules shows that the amine groups strongly interact with the phosphate and carbonyl groups through inter/intramolecular hydrogen bonds. This yields a bilayer structure with DPPE headgroups preferentially located near the lipid phosphate and ester oxygens. It is observed that increasing DPPE concentrations causes competitive hydrogen bonding between the amine groups (hydrogen-donor) and the phosphate/carbonyl groups or water (hydrogen-acceptor). Due to the increasing number of hydrogen-donors from DPPE molecules with increasing concentration, DPPE becomes more hydrated. Trajectory analysis shows that DPPE molecules in the lipid mixtures move laterally and randomly around the membrane surface and the movement becomes more localized with increasing DPPE concentrations. For the conditions and simulation time considered, no aggregation or phase separation was observed between DPPC and DPPE.  相似文献   

2.
The miscibility properties of ether- and ester-linked phospholipids in two-component, fully hydrated bilayers have been studied by differential scanning calorimetry (DSC) and Raman spectroscopy. Mixtures of 1,2-di-O-hexadecyl-rac-glycero-3-phosphocholine (DHPC) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DHPE) and of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with 1,2-di-O-hexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) have been investigated. The phase diagram for the DPPC/DHPE mixtures indicates that these two phospholipids are miscible in all proportions in the nonrippled bilayer gel phase. In contrast, the DHPC/DPPE mixtures display two regions of gel phase immiscibility between 10 and 30 mol% DPPE. Raman spectroscopic measurements of DHPC/DPPE mixtures in the C-H stretching mode region suggest that this immiscibility arises from the formation of DHPC-rich interdigitated gel phase domains with strong lateral chain packing interactions at temperatures below 27 degrees C. However, in the absence of interdigitation, our findings, and those of others, lead to the conclusion that the miscibility properties of mixtures of ether- and ester-linked phospholipids are determined by the nature of the phospholipid headgroups and are independent of the character of the hydrocarbon chain linkages. Thus it seems unlikely that the ether linkage has any significant effect on the miscibility properties of phospholipids in biological membranes.  相似文献   

3.
Images of giant unilamellar vesicles (GUVs) formed by different phospholipid mixtures (1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1, 2-dilauroyl-sn-glycero-3-phosphocholine (DPPC/DLPC) 1:1 (mol/mol), and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPE/DPPC), 7:3 and 3:7 (mol/mol) at different temperatures were obtained by exploiting the sectioning capability of a two-photon excitation fluorescence microscope. 6-Dodecanoyl-2-dimethylamino-naphthalene (LAURDAN), 6-propionyl-2-dimethylamino-naphthalene (PRODAN), and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE) were used as fluorescent probes to reveal domain coexistence in the GUVs. We report the first characterization of the morphology of lipid domains in unsupported lipid bilayers. From the LAURDAN intensity images the excitation generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domain. On the basis of the phase diagram of each lipid mixture, we found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region in all lipid mixtures. At temperatures corresponding to the phase coexistence region we observed lipid domains of different sizes and shapes, depending on the lipid sample composition. In the case of GUVs formed by DPPE/DPPC mixture, the gel DPPE domains present different shapes, such as hexagonal, rhombic, six-cornered star, dumbbell, or dendritic. At the phase coexistence region, the gel DPPE domains are moving and growing as the temperature decreases. Separated domains remain in the GUVs at temperatures corresponding to the solid region, showing solid-solid immiscibility. A different morphology was found in GUVs composed of DLPC/DPPC 1:1 (mol/mol) mixtures. At temperatures corresponding to the phase coexistence, we observed the gel domains as line defects in the GUV surface. These lines move and become thicker as the temperature decreases. As judged by the LAURDAN GP histogram, we concluded that the lipid phase characteristics at the phase coexistence region are different between the DPPE/DPPC and DLPC/DPPC mixtures. In the DPPE/DPPC mixture the coexistence is between pure gel and pure liquid domains, while in the DLPC/DPPC 1:1 (mol/mol) mixture we observed a strong influence of one phase on the other. In all cases the domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This observation is also novel for unsupported lipid bilayers.  相似文献   

4.
An anomalous phase transition with a marked rise in specific heat, the isobaric thermal expansion coefficient, and the compressibility coefficient at 62.5 degrees C for an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and 1-palmitoyl-sn-glycero-3-phosphocholine (PLPC), in water (34 wt.%) has been shown by differential scanning calorimetry, scanning dilatometry and isothermal compressibility measurements. This transition occurs 15 degrees C above a first-order transition observed in the same system. (31)P and (2)H nuclear magnetic resonance results are consistent with the occurrence of 'defects' in the bilayer in the temperature range between the first and the anomalous phase transitions. It is proposed that conically, PLPC molecules prefer regions with high curvature in the defective bilayer, while DPPE molecules are mostly confined to the flat regions of the bilayers.  相似文献   

5.

Background  

Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs) consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm) embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP) ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined.  相似文献   

6.
The distribution of ganglioside in supported lipid bilayers has been studied by atomic force microscopy. Hybrid dipalmitoylphosphatidylcholine (DPPC)/dipalmitoylphosphatidylethanolamine (DPPE) and (2:1 DPPC/cholesterol)/DPPE bilayers were prepared using the Langmuir Blodgett technique. Egg PC and DPPC bilayers were prepared by vesicle fusion. Addition of ganglioside GM1 to each of the lipid bilayers resulted in the formation of heterogeneous surfaces that had numerous small raised domains (30--200 nm in diameter). Incubation of these bilayers with cholera toxin B subunit resulted in the detection of small protein aggregates, indicating specific binding of the protein to the GM1-rich microdomains. Similar results were obtained for DPPC, DPPC/cholesterol, and egg PC, demonstrating that the overall bilayer morphology was not dependent on the method of bilayer preparation or the fluidity of the lipid mixture. However, bilayers produced by vesicle fusion provided evidence for asymmetrically distributed GM1 domains that probably reflect the presence of ganglioside in both inner and outer monolayers of the initial vesicle. The results are discussed in relation to recent inconsistencies in the estimation of sizes of lipid rafts in model and natural membranes. It is hypothesized that small ganglioside-rich microdomains may exist within larger ordered domains in both natural and model membranes.  相似文献   

7.
The effect of the electric field on the phase transition temperature (Tc) of acidic 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) and 1,2-dipalmitoyl-sn-glycero-3-thionphosphate (thion-DPPA) and zwitterion, i.e. 1,2-dipalmitoyl-rac-3-phosphocholine and 1,2-distearoyl-rac-glycero-3-phosphocholine (DPPC and DSPC), lipids has been investigated. The phase transition was detected using the jump-like increase effect in the conductance of the planar bilayer membrane. A voltage increase to 150 mV has been shown to increase the phase transition temperature in a bilayer lipid membrane (BLM) of phosphatidic acids (DPPA and thion-DPPA) by 8-12 degrees C while the transition temperature in the bilayer of zwitterion lipids (DPPC and DSPC) increases insignificantly. The increasing of Tt in BLM of acidic lipids is attributed to the voltage-induced changes in the molecule packing density.  相似文献   

8.
Mixed bilayers of 1-palmitoyl-sn-glycero-3-phosphocholine (palmitoyllysophosphatidylcholine; PaLPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (dipalmitoyl phosphatidylcholine; DPPC) have been investigated by 2H-NMR and 31P-NMR spectroscopy. Binary phospholipid mixtures were studied in which the acyl chains of one or the other component were perdeuterated. At temperatures below the main order-disorder phase transition, the mixed PaLPC/DPPC bilayers appear to coexist with PaLPC micelles. The micelles disappear at temperatures above the phase transition, where mixed bilayers in the liquid-crystalline state are formed. The orientational order of the alkyl chains of the PaLPC component is essentially identical to that of the DPPC component in the mixed bilayers, both in the low temperature and liquid-crystalline phases. However, the presence of PaLPC perturbs the segmental ordering of DPPC as compared to the pure system. The order is increased in the low-temperature phase, where effective diffusion of the chains about their long axes occurs, but is decreased in the liquid-crystalline phase compared to pure DPPC bilayers. The mixed liquid-crystalline bilayers orient preferentially with their director axes perpendicular to the magnetic field. This alignment is easily observed in 31P- and 2H-NMR spectra, where the intensity of the perpendicular edges of the lineshapes is pronounced. One possible explanation of the magnetic alignment involves alteration of the curvature free energy of the DPPC bilayer due to incorporation of PaLPC in the mixed membranes.  相似文献   

9.
The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 binding in DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner.  相似文献   

10.
K Bruzik  M D Tsai 《Biochemistry》1984,23(8):1656-1661
Chirally labeled 1,2-dipalmitoyl-sn-glycero-3-phosphocholines (DPPC) with known configuration were synthesized by N-methylation of chirally labeled 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE). Transphosphatidylation of (RP)- and (SP)-[18O]DPPC catalyzed by phospholipase D from cabbage gave (RP)- and (SP)-[18O]DPPE, respectively, as indicated by 31P nuclear magnetic resonance (NMR) analysis of [18O]DPPE. Therefore, phospholipase D catalyzes transphosphatidylation with overall retention of configuration at phosphorus. The steric course of hydrolysis of DPPC catalyzed by the same enzyme was elucidated by the following procedures. Hydrolysis of (RP)-[17O, 18O]DPPC by phospholipase D gave 1,2-dipalmitoyl-sn-glycero-3-[ 16O , 17O, 18O]phosphate ( [ 16O , 17O, 18O] DPPA ) with unknown configuration. The latter compound was then converted to 1-[ 16O , 17O, 18O]phospho-(R)-propane-1,2-diol by a procedure involving no P-O bond cleavage [ Bruzik , K., & Tsai, M.-D. (1984) J. Am. Chem. Soc. 106, 747-754]. The configuration of the phosphopropane -1,2-diol was determined as RP by 31P NMR analysis following ring closure and methylation [ Buchwald , S. L., & Knowles, J. R. (1980) J. Am. Chem. Soc. 102, 6601-6603]. The results indicated that hydrolysis of DPPC catalyzed by phospholipase D also proceeds with retention of configuration at phosphorus. Our results therefore support a two-step mechanism involving a phosphatidyl-enzyme intermediate in the reactions catalyzed by phospholipase D from cabbage.  相似文献   

11.
Molecular dynamics simulations were used for a comprehensive study of the structural properties of saturated lipid bilayers, DPPC and DPPE, near the main phase transition. Though the chemical structure of DPPC and DPPE are largely similar (they only differ in the choline and ethanolamine groups), their transformation process from a gel to a liquid-crystalline state is contrasting. For DPPC, three distinct structures can be identified relative to the melting temperature (Tm): below Tm with "mixed" domains consisting of lipids that are tilted with partial overlap of the lipid tails between leaflet; near Tm with a slight increase in the average area per lipid, resulting in a rearrangement of the lipid tails and an increase in the bilayer thickness; and above Tm with unhindered lipid tails in random motion resulting in an increase in %gauche formed and increase in the level of interdigitation between lipid leaflets. For DPPE, the structures identified were below Tm with "ordered" domains consisting of slightly tilted lipid tails and non-overlapping lipid tails between leaflets, near Tm with minimal rearrangement of the lipids as the bilayer thickness reduces slightly with increasing temperature, and above Tm with unhindered lipid tails as that for DPPC. For DPPE, most of the lipid tails do not overlap as observed to DPPC, which is due to the tight packing of the DPPE molecules. The non-overlapping behavior of DPPE above Tm is confirmed from the density profile of the terminal carbon atoms in each leaflet, which shows a narrow distribution near the center of the bilayer core. This study also demonstrates that atomistic simulations are capable of capturing the phase transition behavior of lipid bilayers, providing a rich set of molecular and structural information at and near the transition state.  相似文献   

12.
The thermotropic properties of binary mixtures of D-erythro-n-palmitoyl-dihydrosphingomyelin (16:0-DHSM), D-erythro-n-palmitoyl-sphingomyelin (16:0-SM), cholesterol, lathosterol, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were studied by differential scanning calorimetry. Addition of sterol to 16:0-DHSM and 16:0-SM bilayers resulted in a progressive decrease in both the T(m) and the enthalpy of the main transition. The sterol-induced broad components in 16:0-DHSM endotherms had markedly lower enthalpies than those induced in 16:0-SM. Pretransitions recorded in 16:0-DHSM and 16:0-SM membranes responded differently to low concentrations of cholesterol. The presence of 5 mol % cholesterol increased the pretransition temperature in 16:0-SM bilayers, whereas it decreased the temperature in 16:0-DHSM membranes. Lathosterol behaved in general as cholesterol with regard to its effects on the thermotropic behavior of both sphingolipids, but it appeared to form more stable sterol-rich domains, as seen from the higher T(m) of the broad component, in comparison to cholesterol. Thermograms recorded on binary mixtures of 16:0-SM:16:0-DHSM and DPPC:16:0-DHSM showed that 16:0-SM mixed nearly ideally with 16:0-DHSM, whereas DPPC mixing was less ideal in a 16:0-DHSM membrane. In conclusion, we observed that 16:0-DHSM interactions with sterols differed from that seen with 16:0-SM, and that 16:0-DHSM mixed better with 16:0-SM than DPPC, which indicates that DHSM could function as a membrane organizer within laterally condensed domains.  相似文献   

13.
Differential scanning calorimetry has been employed to study the thermal effects of vinblastine sulfate upon aqueous, single and multiple bilayer dispersions of 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC). The calorimetric results summarized to an increase in the gel to liquid-crystalline phase transition enthalpy and the abolishment of the L(beta)' (gel phase) to P(beta)' (ripple phase) pretransition for the uni- and multilamellar dispersions, as well as an increase in the transition temperature T(m) and the transition cooperativity for single bilayer DPPC/vinblastine mixed vesicles, are consistent with an induced, partially interdigitated, gel phase. Computational analysis has been successfully applied to clarify the intermolecular effects and verify the feasibility of the proposed interdigitation for the vinblastine sulfate molecules and also for the ursodeoxycholic acid (UDCAH) and bromocylated taxanes, which have been shown to induce an interdigitated gel phase in DPPC bilayers.  相似文献   

14.
We performed differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopic measurements to study the effects of lathosterol (Lath) on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes and compared our results with those previously reported for cholesterol (Chol)/DPPC binary mixtures. Lath is the penultimate intermediate in the biosynthesis of Chol in the Kandutsch-Russell pathway and differs from Chol only in the double bond position in ring B, which is between C7 and C8 in Lath and between C5 and C6 in Chol. Our DSC studies indicate that the incorporation of Lath is more effective than Chol in reducing the temperature and enthalpy of the DPPC pretransition. At lower sterol concentrations (≤10 mol %), incorporation of both Lath and Chol decreases the temperature, enthalpy, and cooperativity of the sharp component of the main phase transition of DPPC to a similar extent, but at higher sterol concentrations, Lath is more effective at decreasing the phase transition temperature, enthalpy, and cooperativity than Chol. These results indicate that at higher concentrations, Lath is more disruptive of DPPC gel-state bilayer packing than Chol is. Moreover, incorporation of Lath decreases the temperature of the broad component of the main phase transition of DPPC, whereas Chol increases it; this difference in the direction and magnitude of the temperature shift is accentuated at higher sterol concentrations. Although at sterol concentrations of ≤20 mol % Lath and Chol are almost equally effective at reducing the enthalpy and cooperativity of the broad component of the main phase transition, at higher sterol levels Lath is less effective than Chol in these regards and does not completely abolish the cooperative hydrocarbon chain melting phase transition at 50 mol %, as does Chol. These latter results indicate that Lath both is more disruptive with respect to the low-temperature state of the sterol-enriched domains of DPPC bilayers and has a lower lateral miscibility in DPPC bilayers than Chol. Our FTIR spectroscopic studies suggest that Lath incorporation produces a less tightly packed bilayer than does Chol at both low (gel state) and high (liquid-crystalline state) temperatures, which is characterized by increased H-bonding between water and the carbonyl groups of the fatty acyl chains in the DPPC bilayer. Overall, our studies indicate that Lath and Chol incorporation can have rather different effects on the thermotropic phase behavior and organization of DPPC bilayers and thus that the position of the double bond in ring B of a sterol molecule can have an appreciable effect on the physical properties of sterol molecules.  相似文献   

15.
In order to understand the effect of polar head group modification on the thermotropic and barotropic phase behavior of phospholipid bilayer membranes, the phase transitions of dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidyl-N-methylethanolamine (DPMePE), dipalmitoylphosphatidyl-N,N-dimethylethanolamine (DPMe2PE) and dipalmitoylphosphatidylcholine (DPPC) bilayer membranes were observed by differential scanning calorimetry and high-pressure optical methods. The temperatures of the so-called main transition from the gel (L(beta)) or ripple gel (P(beta)') phase to the liquid crystalline (L(alpha)) phase were almost linearly elevated by applying pressure. The slope of the temperature-pressure boundary, dT/dp, was in the range of 0.220-0.264 K MPa(-1) depending on the number of methyl groups in the head group of lipids. The main-transition temperatures of N-methylated DPPEs decreased with increasing size of head group by stepwise N-methylation. On the other hand, there was no significant difference in thermodynamic quantities of the main transition between the phospholipids. With respect to the transition from the subgel (L(c)) phase to the lamellar gel (L(beta) or L(beta)') phase, the transition temperatures were also elevated by applying pressure. In the case of DPPE bilayer the L(c)/L(beta) transition appeared at a pressure higher than 21.8 MPa. At a pressure below 21.8 MPa the L(c)/L(alpha) transition was observed at a temperature higher than the main-transition temperature. The main (L(beta)/L(alpha)) transition can be recognized as the transformation between metastable phases in the range from ambient pressure to 21.8 MPa. Polymorphism in the gel phase is characteristic of DPPC bilayer membrane unlike other lipid bilayers used in this study: the L(beta)', P(beta)' and pressure-induced interdigitated gel (L(beta)I) phases were observed only in the DPPC bilayer. Regarding the bilayers of DPPE, DPMePE and DPMe2PE, the interdigitation of acyl chain did not appear even at pressures as high as 200 MPa.  相似文献   

16.
The interaction of phenol (PHE), salicylic acid (SA) and o-acetylsalicylic acid (ASA) with bilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was investigated by infrared spectrometry. The temperature of the main gel to liquid crystal phase transition of DPPC is markedly depressed in the presence of the three guest molecules. The temperature depression depends on the nature and concentration of the additives. The temperature of the pretransition is also affected by these guest molecules and the depression in temperature is even more pronounced than that of the main transition temperature. Possible modes of interaction of these guest molecules with the lipid bilayers are discussed.  相似文献   

17.
Both wide-angle and lamellar x-ray diffraction data are interpreted in terms of a difference in hydrocarbon chain tilt between fully hydrated dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylethanolamine (DPPE). Although the hydrocarbon chains of multilayers of DPPC tilt ty approximately 30 degrees relative to the normal to the plane of the bilayer, as previously reported by others, the hydrocarbon chains of DPPE appear to be oriented approximately normal to the plane of the bilayer. It is found that the chain tilt in DPPC bilayers can be reduced by either: (a) adding an n-alkane to the bilayer interiors or (b) adding lanthanum ions to the fluid layers between bilayers. A molecular packing model is presented which accounts for these data. According to this model, DPPC chains tilt because of the size and conformation of the PC polar head group.  相似文献   

18.
Temperature-sensitive hydrogel polymers are utilized as responsive layers in various applications. Although the polymer's native characteristics have been studied extensively, details concerning its properties during interaction with biorelated structures are lacking. This work investigates the interaction between a thermoresponsive polymer cushion and different lipid membrane capping layers probed by neutron reflectometry. N-isopropylacrylamide copolymerized with methacroylbenzophenone first supported a lipid bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and subsequently 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The polymer-membrane systems were investigated above and below the polymer transition temperature (37 and 25°C). Although the same cushion supported each lipid membrane, the polymer hydration profile and thickness were markedly different for DPPE and DPPC systems. Because DPPE and DPPC have different bending rigidities, these results establish that the polymer-membrane interaction is critically mediated by the mechanics of the membrane, providing better insight into cell-hydrogel interactions.  相似文献   

19.
We utilize in situ, temperature-dependent atomic force microscopy to examine the gel-fluid phase transition behavior in supported phospholipid bilayers constructed from 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. The primary gel-fluid phase transition at T(m) occurs through development of anisotropic cracks in the gel phase, which develop into the fluid phase. At approximately 5 degrees C above T(m), atomic force microscopy studies reveal the presence of a secondary phase transition in all three bilayers studied. The secondary phase transition occurs as a consequence of decoupling between the two leaflets of the bilayer due to enhanced stabilization of the lower leaflet with either the support or the water entrained between the support and the bilayer. Addition of the transmembrane protein gramicidin A or construction of a highly defected gel phase results in elimination of this decoupling and removal of the secondary phase transition.  相似文献   

20.
Calorimetric, X-ray diffraction, and 31P nuclear magnetic resonance (NMR) studies of aqueous dispersions of 1,2-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) gel phases at low temperatures (-60 to 22 degrees C) show thermal, structural, and dynamic differences when compared to aqueous dispersions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) gel phases at corresponding temperatures. Differential scanning calorimetry of DHPC dispersions demonstrates a reversible, low-enthalpy "subtransition" at 4 degrees C in contrast to the conditionally reversible, high-enthalpy subtransition observed at 17 degrees C for annealed DPPC bilayers. X-ray diffraction studies indicate that DHPC dispersions form a lamellar gel phase with dav congruent to 46 A both above and below the "subtransition". It is suggested that the reduced dav observed for DHPC (46 A as compared to 64 A in DPPC) is due to an interdigitated lamellar gel phase which exists at all temperatures below the pretransition at 35 degrees C. 31P NMR spectra of DHPC gel-phase bilayers show an axially symmetric chemical shift anisotropy powder pattern which remains sharp down to -20 degrees C, suggesting the presence of fast axial diffusion. In contrast, 31P spectra of DPPC bilayers indicate this type of motion is frozen out at approximately 0 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号