首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast synaptic inhibition in the brain is largely mediated by ionotropic GABA receptors, which can be subdivided into GABAA and GABAC receptors based on pharmacological and molecular criteria. GABAA receptors are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are implicated in several diseases including epilepsy, anxiety, depression, and substance abuse. In addition, modulating the efficacy of GABAergic neurotransmission may play a key role in neuronal plasticity. Recent studies have begun to reveal that the accumulation of ionotropic GABAA receptors at synapses is a highly regulated process that is facilitated by receptor-associated proteins and other cell-signaling molecules. This review focuses on recent experimental evidence detailing the mechanisms that control the assembly and transport of functional ionotropic GABAA receptors to cell surface sites, in addition to their stability at synaptic sites. These regulatory processes will be discussed within the context of the dynamic modulation of synaptic inhibition in the central nervous system (CNS).  相似文献   

2.
Modulation of the GABAA receptor by progesterone metabolites   总被引:12,自引:0,他引:12  
The naturally occurring progesterone metabolites 5 beta-pregnan-3 alpha-ol-20-one and 5 beta-pregnane-3,20-dione reversibly enhance membrane currents elicited by locally applied GABA in bovine adrenomedullary chromaffin cells. Such potentiation was not influenced by the benzodiazepine antagonist Ro 15-1788. At concentrations in excess of those necessary to evoke potentiation of GABA currents, 5 beta-pregnan-3 alpha-ol-20-one and 5 beta-pregane-3,20-dione directly activated a membrane conductance. The resulting currents were potentiated by phenobarbitone and diazepam, and abolished by the GABAA-receptor antagonist, bicuculline. On outside-out membrane patches, 5 beta-pregnan-3 alpha-ol-20-one and 5 beta-pregnane-3,20-dione activated single channel currents of similar amplitude to those evoked by GABA. The results suggest that certain naturally occurring steroids potentiate the actions of GABA and, additionally, directly activate the GABAA receptor.  相似文献   

3.
Testicular receptor 4 (TR4) is an orphan member of the nuclear receptor superfamily. Despite the lack of identified ligands, its functional role has been demonstrated both in animals and cell cultures. However, it remains unclear how the biological activity of TR4 is regulated without specific ligands. In this study, we showed that in the absence of specific ligands the activity of TR4 could be modulated by mitogen-activated protein kinase (MAPK)-mediated phosphorylation of its activation function 1 (AF-1) domain. A mass spectrometry-based proteome analysis of TR4 expressed in insect cells revealed three phosphorylation sites in its AF-1 domain, specifically on Ser(19), Ser(55), and Ser(68). Site-directed mutagenesis studies demonstrated the functionality of phosphorylation on Ser(19) and Ser(68) but not Ser(55). We also demonstrated that MAPK-mediated phosphorylation of the AF-1 domain rendered TR4 a repressor, mediated through the preferential recruitment of corepressor RIP140. Dephosphorylation of its AF-1 made TR4 an activator due to its selective recruitment of coactivator, P300/cyclic AMP-responsive element binding protein-binding protein-associated factor (PCAF). The biological effects were validated by using the wild type TR4 and its constitutive negative (dephosphorylated) and constitutive positive (phosphorylated) mutants in the studies of regulation of its natural target gene, apoE. This study uncovered, for the first time, a ligand-independent mechanism underlying the biological activity of TR4 that was mediated by MAPK-mediated receptor phosphorylation of AF-1 domain.  相似文献   

4.
Most excitatory transmission in the brain is mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPA receptors). Therefore, the presence of these receptors at synapses has to be carefully regulated in order to ensure correct neuronal communication. Interestingly, AMPA receptors are not static components of synapses. On the contrary, they are continuously being delivered and removed in and out of synapses in response to neuronal activity. This dynamic behavior of AMPA receptors is an important mechanism to modify synaptic strength during brain development and also during experience-dependent plasticity. AMPA receptor trafficking involves an intricate network of protein-protein interactions that start with the biosynthesis of the receptors, continues with their transport along dendrites, and ends with their local insertion and removal from synapses. The molecular and cellular mechanisms that regulate each of these processes, and their importance for synaptic plasticity, are now starting to be unraveled.  相似文献   

5.
The glucocorticoid receptor (GR) is phosphorylated at three major sites on its N terminus (S203, S211, and S226), and phosphorylation modulates GR-regulatory functions in vivo. We examined the phosphorylation site interdependence, the contribution of the receptor C-terminal ligand-binding domain, and the participation of protein phosphatases in GR N-terminal phosphorylation and gene expression. We found that GR phosphorylation at S203 was greater when S226 was not phosphorylated and vice versa, indicative of intersite dependency. We also observed that a GR derivative lacking the ligand-binding domain, which no longer binds the heat shock protein 90 (Hsp90) complex, exhibits increased GR phosphorylation at all three sites as compared with the full-length receptor. A GR mutation (F602S) that produces a receptor less dependent on Hsp90 for function as well as treatment with the Hsp90 inhibitor geldanamycin also increased basal GR phosphorylation at a subset of sites. Pharmacological inhibition of serine/threonine protein phosphatases increased GR basal phosphorylation. Likewise, a reduction in protein phosphatase 5 protein levels enhanced GR phosphorylation at a subset of sites and selectively reduced the induction of endogenous GR target genes. Together, our findings suggest that GR undergoes a phosphorylation/dephosphorylation cycle that maintains steady-state receptor phosphorylation at a low basal level in the absence of ligand. Our findings also suggest that the ligand-dependent increase in GR phosphorylation results, in part, from the dissociation of a ligand-binding domain-linked protein phosphatase(s), and that changes in the intracellular concentration of protein phosphatase 5 differentially affect GR target gene expression.  相似文献   

6.
Agonist-stimulatedphosphorylation of guanine nucleotide-binding protein (Gprotein)-coupled receptors has been recognized as an importantmechanism for desensitization by interfering with coupling of theactivated receptor with its G protein. We recently described a mutantof the CCK receptor that modified two of five key sites ofphosphorylation (S260,264A) and eliminated agonist-stimulated receptorphosphorylation, despite normal ligand binding and signaling (20). As expected, this nonphosphorylated mutant hadimpaired rapid desensitization but was ultimately able to bedesensitized by normal receptor internalization. Here we demonstratethat this mutant receptor is also defective in resensitization, withabnormal recycling to the cell surface. To explore this, anotherreceptor mutant was prepared, replacing the same serines withaspartates to mimic the charge of serine-phosphate (S260,264D). Thismutant was expressed in a Chinese hamster ovary cell line and shown to bind CCK normally. It had accelerated kinetics of signaling and desensitization and was phosphorylated in response to agonist occupation, with all other normal sites of phosphorylation modified. Itwas internalized like wild-type receptors and was resensitized andtrafficked normally. This provides evidence for an additional importantfunction for phosphorylation of G protein-coupled receptors. Phosphorylation may induce a conformational change in the receptor toexpose other potential sites of phosphorylation and to expose domainsinvolved in the targeting and trafficking of endosomes. Thehierarchical phosphorylation of these sites may play a key role inreceptor regulation.

  相似文献   

7.
Fast synaptic inhibition in the brain and spinal cord is mediated largely by ionotropic gamma-aminobutyric acid (GABA) receptors. GABAA receptors play a key role in controlling neuronal activity; thus modulating their function will have important consequences for neuronal excitation. GABAA receptors are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are involved in a number of CNS diseases, including sleep disturbances, anxiety, premenstrual syndrome, alcoholism, muscle spasms, Alzheimer's disease, chronic pain, schizophrenia, bipolar affective disorders, and epilepsy. This review focuses on the functional and pharmacological properties of GABAA receptors and trafficking as an essential mechanism underlying the dynamic regulation of synaptic strength.  相似文献   

8.
Regulation of AMPA receptor trafficking and synaptic plasticity   总被引:1,自引:0,他引:1  
AMPA receptors (AMPARs) mediate the majority of fast excitatory synaptic transmission in the brain. Dynamic changes in neuronal synaptic efficacy, termed synaptic plasticity, are thought to underlie information coding and storage in learning and memory. One major mechanism that regulates synaptic strength involves the tightly regulated trafficking of AMPARs into and out of synapses. The life cycle of AMPARs from their biosynthesis, membrane trafficking, and synaptic targeting to their degradation are controlled by a series of orchestrated interactions with numerous intracellular regulatory proteins. Here we review recent progress made toward the understanding the regulation of AMPAR trafficking, focusing on the roles of several key intracellular AMPAR interacting proteins.  相似文献   

9.
The neurotransmitter gamma-aminobutyric acid (GABA) mediates inhibitory signaling in the brain via stimulation of both GABA(A) receptors (GABA(A)R), which are chloride-permeant ion channels, and GABA(B) receptors (GABA(B)R), which signal through coupling to G proteins. Here we report physical interactions between these two different classes of GABA receptor. Association of the GABA(B) receptor 1 (GABA(B)R1) with the GABA(A) receptor gamma2S subunit robustly promotes cell surface expression of GABA(B)R1 in the absence of GABA(B)R2, a closely related GABA(B) receptor that is usually required for efficient trafficking of GABA(B)R1 to the cell surface. The GABA(B)R1/gamma2S complex is not detectably functional when expressed alone, as assessed in both ERK activation assays and physiological analyses in oocytes. However, the gamma2S subunit associates not only with GABA(B)R1 alone but also with the functional GABA(B)R1/GABA(B)R2 heterodimer to markedly enhance GABA(B) receptor internalization in response to agonist stimulation. These findings reveal that the GABA(B)R1/gamma2S interaction results in the regulation of multiple aspects of GABA(B) receptor trafficking, allowing for cross-talk between these two distinct classes of GABA receptor.  相似文献   

10.
AMPA receptor trafficking and the control of synaptic transmission.   总被引:6,自引:0,他引:6  
M Sheng  S H Lee 《Cell》2001,105(7):825-828
  相似文献   

11.
Tonic inhibition in the brain is mediated largely by specialized populations of extrasynaptic receptors, γ-aminobutyric acid receptors (GABA(A)Rs). In the dentate gyrus region of the hippocampus, tonic inhibition is mediated primarily by GABA(A)R subtypes assembled from α4β2/3 with or without the δ subunit. Although the gating of these receptors is subject to dynamic modulation by agents such as anesthetics, barbiturates, and neurosteroids, the cellular mechanisms neurons use to regulate their accumulation on the neuronal plasma membrane remain to be determined. Using immunoprecipitation coupled with metabolic labeling, we demonstrate that the α4 subunit is phosphorylated at Ser(443) by protein kinase C (PKC) in expression systems and hippocampal slices. In addition, the β3 subunit is phosphorylated on serine residues 408/409 by PKC activity, whereas the δ subunit did not appear to be a PKC substrate. We further demonstrate that the PKC-dependent increase of the cell surface expression of α4 subunit-containing GABA(A)Rs is dependent on Ser(443). Mechanistically, phosphorylation of Ser(443) acts to increase the stability of the α4 subunit within the endoplasmic reticulum, thereby increasing the rate of receptor insertion into the plasma membrane. Finally, we show that phosphorylation of Ser(443) increases the activity of α4 subunit-containing GABA(A)Rs by preventing current run-down. These results suggest that PKC-dependent phosphorylation of the α4 subunit plays a significant role in enhancing the cell surface stability and activity of GABA(A)R subtypes that mediate tonic inhibition.  相似文献   

12.
A series of aminothiazoles that are potent inhibitors of LIM kinases 1 and 2 is described. Appropriate choice of substituents led to molecules with good selectivity for either enzyme. An advanced member of the series was shown to effectively interfere with the phosphorylation of the LIM kinases substrate cofilin. Consistent with the important role of the LIM kinases in regulating cytoskeletal structure, treated cells displayed dramatically reduced F-actin content.  相似文献   

13.
Uncontrolled mitosis is one of the most important features of cancer, and mitotic kinases are thought to be ideal targets for anticancer therapeutics. However, despite numerous clinical attempts spanning decades, clinical trials for mitotic kinase-targeting agents have generally stalled in the late stages due to limited therapeutic effectiveness. Alisertib (MLN8237) is a promising oral mitotic aurora kinase A (AURKA, Aurora-A) selective inhibitor, which is currently under several clinical evaluations but has failed in its first Phase III trial due to inadequate efficacy. In this study, we performed genome-wide CRISPR/Cas9-based screening to identify vulnerable biological processes associated with alisertib in breast cancer MDA-MB-231 cells. The result indicated that alisertib treated cancer cells are more sensitive to the genetic perturbation of oxidative phosphorylation (OXPHOS). Mechanistic investigation indicated that alisertib treatment, as well as other mitotic kinase inhibitors, rapidly reduces the intracellular ATP level to generate a status that is highly addictive to OXPHOS. Furthermore, the combinational inhibition of mitotic kinase and OXPHOS by alisertib, and metformin respectively, generates severe energy exhaustion in mitotic cells that consequently triggers cell death. The combination regimen also enhanced tumor regression significantly in vivo. This suggests that targeting OXPHOS by metformin is a potential strategy for promoting the therapeutic effects of mitotic kinase inhibitors through the joint targeting of mitosis and cellular energy homeostasis.Subject terms: Mitosis, Cancer screening, Preclinical research  相似文献   

14.
15.
Jun N-terminal kinases (JNKs) are implicated in various neuropathological conditions. However, physiological roles for JNKs in neurons remain largely unknown, despite the high expression level of JNKs in brain. Here, using bioinformatic and biochemical approaches, we identify the AMPA receptor GluR2L and GluR4 subunits as novel physiological JNK substrates in vitro, in heterologous cells and in neurons. Consistent with this finding, GluR2L and GluR4 associate with specific JNK signaling components in the brain. Moreover, the modulation of the novel JNK sites in GluR2L and GluR4 is dynamic and bi-directional, such that phosphorylation and de-phosphorylation are triggered within minutes following decreases and increases in neuronal activity, respectively. Using live-imaging techniques to address the functional consequence of these activity-dependent changes we demonstrate that the novel JNK site in GluR2L controls reinsertion of internalized GluR2L back to the cell surface following NMDA treatment, without affecting basal GluR2L trafficking. Taken together, our results demonstrate that JNK directly regulates AMPA-R trafficking following changes in neuronal activity in a rapid and bi-directional manner.  相似文献   

16.
The levels of the cGMP in smooth muscle of the gut reflect continued synthesis by soluble guanylate cyclase (GC) and breakdown by phosphodiesterase 5 (PDE5). Soluble GC is a haem-containing, heterodimeric protein consisting alpha- and beta-subunits: each subunit has N-terminal regulatory domain and a C-terminal catalytic domain. The haem moiety acts as an intracellular receptor for nitric oxide (NO) and determines the ability of NO to activate the enzyme and generate cGMP. In the present study the mechanism by which protein kinases regulate soluble GC in gastric smooth muscle was examined. Sodium nitroprusside (SNP) acting as a NO donor stimulated soluble GC activity and increased cGMP levels. SNP induced soluble GC phosphorylation in a concentration-dependent fashion. SNP-induced soluble GC phosphorylation was abolished by the selective cGMP-dependent protein kinase (PKG) inhibitors, Rp-cGMPS and KT-5823. In contrast, SNP-stimulated soluble GC activity and cGMP levels were significantly enhanced by Rp-cGMPS and KT-5823. Phosphorylation and inhibition of soluble GC were PKG specific, as selective activator of cAMP-dependent protein kinase, Sp-5, 6-DCl-cBiMPS had no effect on SNP-induced soluble GC phosphorylation and activity. The ability of PKG to stimulate soluble GC phosphorylation was demonstrated in vitro by back phosphorylation technique. Addition of purified phosphatase 1 inhibited soluble GC phosphorylation in vitro, and inhibition was reversed by a high concentration (10 microM) of okadaic acid. In gastric smooth muscle cells, inhibition of phosphatase activity by okadaic acid increased soluble GC phosphorylation in a concentration-dependent fashion. The increase in soluble GC phosphorylation inhibited SNP-stimulated soluble GC activity and cGMP formation. The results implied the feedback inhibition of soluble GC activity by PKG-dependent phosphorylation impeded further formation of cGMP.  相似文献   

17.
18.
The number and subunit composition of synaptic N-methyl-D-aspartate receptors (NMDARs) are not static, but change in a cell- and synapse-specific manner during development and in response to neuronal activity and sensory experience. Neuronal activity drives not only NMDAR synaptic targeting and incorporation, but also receptor retrieval, differential sorting into the endosomal-lysosomal pathway and lateral diffusion between synaptic and extrasynaptic sites. An emerging concept is that activity-dependent, bidirectional regulation of NMDAR trafficking provides a dynamic and potentially powerful mechanism for the regulation of synaptic efficacy and remodelling, which, if dysregulated, can contribute to neuropsychiatric disorders such as cocaine addiction, Alzheimer's disease and schizophrenia.  相似文献   

19.
20.
The analysis of pea rbcS-3A promoter sequence showed that BoxII was necessary for the control of rbcS-3A gene expression by light. GT-1, a DNA-binding protein that interacts with BoxII in vitro, is a good candidate for being a light-modulated molecular switch controlling gene expression. However, the relationship between GT-1 activity and light-responsive gene activation still remains hypothetical. Because no marked de novo synthesis was detected after light treatment, light may induce post-translational modifications of GT-1 such as phosphorylation or dephosphorylation. Here, we show that recombinant GT-1 (hGT-1) of Arabidopsis can be phosphorylated by various mammalian kinase activities in vitro. Whereas phosphorylation by casein kinase II had no apparent effect on hGT-1 DNA binding, phosphorylation by calcium/calmodulin kinase II (CaMKII) increased the binding activity 10–20-fold. Mass spectrometry analyses of the phosphorylated hGT-1 showed that amongst the 6 potential phosphorylatable residues (T86, T133, S175, T179, S198 and T278), only T133 and S198 are heavily modified. Analyses of mutants altered at T86, T133, S175, T179, S198 and T278 demonstrated that phosphorylation of T133 can account for most of the stimulation of DNA-binding activity by CaMKII, indicating that this residue plays an important role in hGT-1/BoxII interaction. We further showed that nuclear GT-1 DNA-binding activity to BoxII was reduced by treatment with calf intestine phosphatase in extracts prepared from light-grown plants but not from etiolated plants. Taken together, our results suggest that GT-1 may act as a molecular switch modulated by calcium-dependent phosphorylation and dephosphorylation in response to light signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号