首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel surface treatment method was developed to enhance polymer-based microchannel enzyme-linked immunosorbent assay (ELISA) for Escherichia coli O157:H7 detection. By applying an amine-bearing polymer, poly(ethyleneimine) (PEI), onto poly(methyl methacrylate) (PMMA) surface at pH higher than 11, PEI molecules were covalently attached and their amine groups were introduced to PMMA surface. Zeta potential analysis and X-ray photoelectron spectroscopy (XPS) demonstrated that the alkali condition is preferable for PEI attachment onto the PMMA surface. The amine groups on the PMMA surface were then functionalized with glutaraldehyde, whose aldehyde groups served as the active sites for binding the antibody by forming covalent bonds with the amine groups of the protein molecules. This surface modification greatly improved antibody binding efficiency and the microchannel ELISA for E. coli O157:H7 detection. Compared with untreated PMMA microchannels, approximately 45 times higher signal and 3 times higher signal/noise ratio were achieved with the PEI surface treatment, which also shortened the time required for cells to bind to the microchannel surface to approximately 2 min, much less than that usually required for the same ELISA carried out in 96-well plates. The detection in the microchannel ELISA only required 5-8 cells per sample, which is also better than 15-30 cells required in multi-well plates. With the high sensitivity, short assay time, and small reagent consumption, the microchannel ELISA can be economically used for fast detection of E. coli O157:H7.  相似文献   

2.
Summary We describe a method for increasing the hydrophilicity of materials formed from biodegradable polymers and introducing chemical functional groups on their surfaces. Poly(L-lactic acid) was blended with poly(ɛ-CBZ-L-lysine) at an 80:20 ratio. Films of the mixture were prepared and foams were made by solvent casting and salt leaching. Amino groups on the surface of the polymer mixture were deprotected by acid hydrolysis. As an example of the applicability of the technique for attachment of biomolecules, we covalently linked collagen to the deprotected amino groups, creating a surface capable of high density growth of a differentiated cell type (bovine adrenocortical cells). The method should be generally useful for surface modification of biodegradable polymer materials used in tissue engineering.  相似文献   

3.
Homopolynucleotides--poly(adenylic acid), poly(A), and poly(uridylic acid), poly(U)--were assembled, layer-by-layer, into thin films with poly(ethylenimine), PEI. Various combinations and sequences of polynucleotide and PEI were used to highlight contributions of electrostatic versus hydrogen bonding as driving forces for multilayer build-up. Assembly of alternating poly(A) and poly(U) failed to yield growing films, due to excessively strong interactions between these complimentary strands. The surface morphology of multilayers depended on the deposition order and whether films had been annealed by salt. Films assembled from preformed A/U duplexes (having high persistence lengths) were very smooth. Individual adsorption steps, followed by optical waveguide light-mode spectroscopy, showed that only complementary polynucleotides adsorb by H-bonding to the surface of a growing multilayer. In contrast to behavior usually observed for polyelectrolyte multilayer build-up, the films decreased in thickness with increasing salt concentration.  相似文献   

4.
Reactive phosphorylcholine polymers, which can recognize biosynthetic cell-surface tags, were synthesized to control cell attachment. Human promyelocytic leukemia cells (HL-60) with unnatural carbohydrates as cell-surface tags were harvested by treatment with N-levulinoylmannosamine (ManLev). The attachment of ManLev-treated HL-60 cells to 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers with hydrazide groups was studied. HL-60 cells, which are nonadhesive, did not attach to any polymer surface without ManLev treatment. In contrast, ManLev-treated HL-60 cells attached to a poly[MPC-co-n-butyl methacrylate (BMA)-co-methacryloyl hydrazide (MH)] (PMBH) surface following 15 min of incubation. The cells that attached to the PMBH surface retained their native morphology and viability for 24 h of incubation. On the other hand, approximately half of the HL-60 cells that attached to the poly(BMA-co-MH) (PBH) surface died. These results suggest that MH units in the polymer act as anchors for cell attachment and MPC units help to preserve cell viability on a polymer surface. The coculture of ManLev-treated HL-60 and fluorescence-stained human uterine cervical cancer cells (HeLa) was carried out on polymer surfaces. ManLev-treated HL-60 cells specifically attached to the PMBH surface. In contrast, both HL-60 and HeLa cells were observed on the PBH surface. The control of cellular interactions with synthetic polymers may be useful for the future development of cell-integrated biosensors and biomedical devices.  相似文献   

5.
Bechler SL  Lynn DM 《Biomacromolecules》2012,13(5):1523-1532
We report on conjugate addition-based approaches to the covalent layer-by-layer assembly of thin films and the post-fabrication functionalization of biointerfaces. Our approach is based on a recently reported approach to the "reactive" assembly of covalently cross-linked polymer multilayers driven by the 1,4-conjugate addition of amine functionality in poly(ethyleneimine) (PEI) to the acrylate groups in a small-molecule pentacrylate species (5-Ac). This process results in films containing degradable β-amino ester cross-links and residual acrylate and amine functionality that can be used as reactive handles for the subsequent immobilization of new functionality. Layer-by-layer growth of films fabricated on silicon substrates occurred in a supra-linear manner to yield films ≈ 750 nm thick after the deposition of 80 PEI/5-Ac layers. Characterization by atomic force microscopy (AFM) suggested a mechanism of growth that involves the reactive deposition of nanometer-scale aggregates of PEI and 5-Ac during assembly. Infrared (IR) spectroscopy studies revealed covalent assembly to occur by 1,4-conjugate addition without formation of amide functionality. Additional experiments demonstrated that acrylate-containing films could be postfunctionalized via conjugate addition reactions with small-molecule amines that influence important biointerfacial properties, including water contact angles and the ability of film-coated surfaces to prevent or promote the attachment of cells in vitro. For example, whereas conjugation of the hydrophobic molecule decylamine resulted in films that supported cell adhesion and growth, films treated with the carbohydrate-based motif D-glucamine resisted cell attachment and growth almost completely for up to 7 days in serum-containing media. We demonstrate that this conjugate addition-based approach also provides a means of immobilizing functionality through labile ester linkages that can be used to promote the long-term, surface-mediated release of conjugated species and promote gradual changes in interfacial properties upon incubation in physiological media (e.g., over a period of at least 1 month). These covalently cross-linked films are relatively stable in biological media for prolonged periods, but they begin to physically disintegrate after ≈ 30 days, suggesting opportunities to use this covalent layer-by-layer approach to design functional biointerfaces that ultimately erode or degrade to facilitate elimination.  相似文献   

6.
Nanostructured polyelectrolyte multilayer thin films electrostatically assembled alternately from such polymers as poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) were investigated for their in vitro cell interactions. Not surprisingly, NR6WT cells, a highly adhesive murine fibroblast cell line, attached to many different multilayer combinations tested. However, PAH/PAA multilayers constructed at pH deposition conditions of 2.0/2.0 were completely bioinert. Analogous cell interactions were observed with PAH/poly(methacrylic acid) (PAH/PMA), PAH/sulfonated poly(styrene) (PAH/SPS), and poly(diallyldimethylammonium chloride)/SPS (PDAC/SPS) systems, thereby suggesting a general trend in the fibroblasts' response to multilayers. Specifically, highly ionically stitched films attracted cells, whereas weakly ionically cross-linked multilayers, which swell substantially in physiological conditions to present richly hydrated surfaces, resisted fibroblast attachment. Thus, by manipulating the multilayer pH or ionic strength assembly conditions or both, which in turn dictate the molecular architecture of the thin films, one may powerfully direct a single multilayer combination to be either cell adhesive or cell resistant.  相似文献   

7.
A novel water-soluble lipopolymer was synthesized by linking cholesteryl chloroformate to the secondary amino groups of branched poly(ethylenimine) (PEI) of 1,800 and 10,000 Da. Conjugation through PEI secondary amines gives this newly synthesized lipopolymer (abbreviated as PEI-Chol) special advantage over our previously synthesized lipopolymers, which utilized the primary amino groups for conjugation, as the primary amino groups have a significant role in DNA condensation. Also, significantly, only one cholesterol molecule was grafted onto each PEI molecule (confirmed by (1)H NMR and MALDI-TOF mass spectrometry), leaving enough space for the steric interactions of the PEI's primary amines with the DNA. The PEI-Chol lipopolymer was characterized for the critical micellar concentration (cmc), buffer capacity, DNA condensation (by band retardation and circular dichroism), in vitro transfection efficiency, and cell viability. The cmcs of PEI-Chol 1,800 and PEI-Chol 10,000 were 496.6 and 1,330.5 microg/mL, respectively. The acid-base titration indicated high buffering capacity of the polymers around the pH range of 5-7, which indicated their potential for buffering in the acidic pH environment of the endosomes. The band retardation studies indicated that efficient condensation of the plasmid DNA could be achieved using these lipopolymers. The circular dichroism spectra indicated a change in DNA conformation and adoption of lower energy state upon condensation with these lipopolymers when an N/P ratio of 2.5/1 or above was formulated. The mean particle size of these complexes was in the range 110-205 nm, except for the complexes prepared using PEI of 1,800 Da, which had a mean particle size of 384 +/- 300 nm. The zeta potential of DNA complexes prepared using PEI-Chol 1,800, PEI-Chol 10,000 and PEI of 1,800, 10,000, and 25,000 Da at an N/P ratio of 15/1 was in the range 23-30 mV and was dependent on the N/P ratios. The in vitro transfection of PEI-Chol/pCMS-EGFP complexes in Jurkat cells showed high levels of expressed Green Fluorescent Protein (GFP) with little toxicity as determined by flow cytometry. These novel water-soluble lipopolymers provided good transfection efficiency with other desirable characteristics such as water solubility, free primary amino groups for efficient DNA condensation and high buffer capacity that indicated the possibility of efficient endosomal release.  相似文献   

8.
Ovarian cancer is currently the most lethal gynecologic cancer in the United States. There is an urgent need for the development of innovative therapies against ovarian cancer, such as immunotherapy. The toll-like receptor 3 ligand, polyriboinosinic:polyribocytidylic acid (poly(I:C), has emerged as a promising adjuvant for activating the host immune responses for the control of tumors. We reasoned that a strategy to enhance the intracellular uptake of poly(I:C) will likely improve the poly(I:C) adjuvant effect. Since polyethylenimine (PEI) has been shown to increase the transfection efficiency of nucleic acids, we characterized the antitumor effects in mouse ovarian surface epithelial cells (MOSEC) tumor-bearing mice treated intraperitoneally with poly(I:C) and PEI. We observed that tumor-bearing mice treated with poly(I:C) and PEI generated significantly better therapeutic antitumor effects against MOSEC tumors compared with treatment with poly(I:C) alone. Furthermore, we found that NK cells play a significant role in the antitumor effects generated by treatment with poly(I:C) in combination with PEI. Intraperitoneal administration of poly(I:C) with PEI led to the uptake of poly(I:C) mainly by CD11b+ macrophages, resulting in the high expression of MHC class II and IL-12 (M1 phenotype). In addition, adoptive transfer of CD11b+ macrophages from mice treated with poly(I:C) and PEI was found to lead to increased number of activated NK cells in the recipient mice. Taken together, our data indicate that PEI can potentially be used to improve the uptake of poly(I:C) by CD11b+ macrophages, leading to the activation of NK cells and the control of murine ovarian tumors.  相似文献   

9.
A new procedure for the photochemical functionalization and the subsequent nonradioactive labeling of synthetic oligonucleotides with psoralen derivatives was developed where a double-stranded poly(A-T) tail is attached to the 5'- or 3'-end of the oligonucleotide to be labeled. The double-stranded poly(A-T) tail is covalently crosslinked by psoralen molecules which carry reactive thiol or amino groups for the attachment of labels. A NH2-specific terbium chelate exhibiting long-lived fluorescence was attached to the functional groups of the intercalated psoralen molecules. Oligonucleotides substituted in this way hybridize readily and can be sensitively detected by time-resolved fluorescence measurements.  相似文献   

10.
Polysialic acid (polySia) and oligosialic acid (oligoSia) chains are linear polysaccharides composed of sialic acid monomers. The majority of biological poly/oligoSia chains are bound to membranes. There is a large diversity of membrane poly/oligoSia in terms of chain length, occurrence, biological function, and the mode of membrane attachment. Poly/oligoSia can be anchored to a membrane via a phospholipid (polySia in bacteria), a glycosphingolipid (oligoSia in gangliosides), an integral membrane glycoprotein, or a glycoprotein attached to a membrane via glycosylphosphatidylinositol. In eukaryotic cells, the attachment of a poly/oligoSia chain to the membrane anchor is usually through α-2,3-glycosidic linkage to a galactose. In prokaryotic cells this attachment is proposed to occur through glycosidic linkage to the phosphate group of a phospholipid. Both long polySia chains attached to membrane proteins and short oligoSia attached to glycosphingolipids or membrane proteins are frequently found in neural membranes. In humans, poly/oligoSia is involved in development and plasticity of the brain, pathophysiology of schizophrenic brains, cancer metastasis, neuroinvasive potential of pathogenic bacterial strains, and the immune response. Biological roles of poly/oligoSia are based on its ability to modulate repulsive and attractive interactions between two molecules, and its ability to modulate membrane surface charge density, pH at the membrane surface, and membrane potentials.  相似文献   

11.
Surfaces covered with polyethylene glycol (PEG) have been shown to be biocompatible because PEG yields nonimmunogenicity, nonantigenicity and protein rejection. To produce a biocompatible surface coating, we have developed a method for grafting PEG onto modified poly(vinylidene fluoride) (PVDF) films. The first step was to create carboxy groups on the PVDF surface following covalente coupling of polyethylenimine (PEI) to achieve high density of amino groups. These surface amines were reacted with formyl-terminated PEG's with various molecular weight. The modified PVDF surface was characterized by means of static contact angle measurements, infrared (IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The influence of the chain length on lysozyme repellence was investigated by means of surface-MALDI-Tof mass spectrometry (Surface-MALDI-Tof-MS). Lysozyme adsorption was significantly suppressed on the PEG 5000 modified PVDF surface.  相似文献   

12.
Wu D  Liu Y  Jiang X  He C  Goh SH  Leong KW 《Biomacromolecules》2006,7(6):1879-1883
Hyperbranched poly(amino ester)s containing tertiary amines in the core and primary, secondary, and tertiary amines in the periphery, respectively, were evaluated for DNA delivery in vitro. The same core structure facilitated the investigation on the effects of the terminal amine type on the properties of hyperbranched poly(amino ester)s for DNA delivery. The hydrolysis of the poly(amino ester)s was monitored using (1)H NMR. The results reflected that the terminal amine type had negligible effects on the hydrolysis rate but was much slower than that of linear poly(amino ester)s, probably due to the compact hyperbranched spatial structure preventing the accessibility of water. In comparison with PEI 25 K, the hyperbranched poly(amino ester)s showed much lower cytotoxicity in Cos7, HEK293, and HepG2 cells. Gel electrophoresis indicated that poly(amino ester)s could condense DNA efficiently, and the zeta potentials and sizes of the complexes formed with different weight ratios of hyperbranched poly(amino ester)s and DNA were measured. Remarkably, all the hyperbranched poly(amino ester)s showed DNA transfection efficiency comparable to PEI 25 K in Cos7, HEK293, and HepG2 cells regardless of the terminal amine type. Therefore, the terminal amine type had insignificant effects on the hydrolysis rate, cytotoxicity, DNA condensation capability, and in vitro DNA transfection efficiency of the hyperbranched poly(amino ester)s.  相似文献   

13.
Raman spectroscopy is applied in this work to study the adsorption of poly(ethyleneimine) (PEI) on Ag nanoparticles obtained by reduction with citrate, as well as to the study of the interaction between PEI and a plasmid. The surface-enhanced Raman spectroscopy (SERS) affords important information about the interaction and orientation of the polymer on the particles. In particular we have found that this polymer interacts with the surface through their amino groups in an interaction which also involves a change in the protonation state of amino groups as well as an increase of the chain order. This interaction implies a charge-transfer effect as deduced from the strong resonant effect in Raman spectra obtained at different excitation wavelengths. The complex formed by PEI and a plasmid, obtained by encoding the HBV (hepatitis B virus) genome inside the EcoRI restriction site of pGEM vector, was also studied by SERS. The interaction between both polymers leads to a conformational change affecting both macromolecules that can be detected by Raman at different excitation wavelengths. PEI undergoes a change to a more disordered structure as well as an increase of the number of protonated amino groups. The plasmid undergoes a structural change from A-DNA structure to B-DNA, along with a change in the superhelicity resulting in a more lineal structure when the plasmid interacts with PEI.  相似文献   

14.
The surface of chitosan films was modified using acid chloride and acid anhydrides. Chemical composition at the film surface was analyzed by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). ATR-FTIR data verified that the substitution took place at the amino groups of chitosan, thus forming amide linkages, and the modification proceeded to the depth at least 1 microm. Choices of molecules substituted at the amino groups of the glucosamine units did affect the hydrophobicity of the film surface, as indicated by air-water contact angle analysis. The surface became more hydrophobic than that of non-modified film when a stearoyl group (C(17)H(35)CO-) was attached to the films. The reaction of chitosan films with succinic anhydride or phthalic anhydride, however, produced more hydrophilic films. Selected modified films were subjected to protein adsorption study. The amount of protein adsorbed, determined by bicinchoninic acid (BCA) assay, related to the types of attached molecules. The improved surface hydrophobicity affected by the stearoyl groups promoted protein adsorption. In contrast, selective adsorption behavior was observed in the case of the chitosan films modified with anhydride derivatives. Lysozyme adsorption was enhanced by H-bonding and charge attraction with the hydrophilic surface. While the amount of albumin adsorbed was decreased possibly due to negative charges that gave rise to repulsion between the modified surface and albumin. This study has demonstrated that it is conceivable to fine-tune surface properties which influence its response to bio-macromolecules by heterogeneous chemical modification.  相似文献   

15.
Cholesterol biosensors prepared by layer-by-layer technique   总被引:5,自引:0,他引:5  
The analysis of formation, deposition and characterization of cholesterol oxidase (COX) layer-by-layer films were performed. Initially, a layer of polyanion, poly(styrene sulfonate) (PSS) was adsorbed followed by a layer of polycation, poly(ethylene imine) (PEI) on each solid substrate from aqueous solutions. The alternating layers were formed by consecutive adsorption of polycations (PEI) and negatively charged proteins (COX) and cholesterol esterase (CE). A strong interaction between protein and polyelectrolyte improves the stability of the alternating multilayer; however, it can change a native protein conformation and impair the protein activity. The PSS/PEI/COX, PSS/PEI/COX/PEI/CE, PSS/PEI/COX-CE/PEI etc. layered structures were prepared on the surface of a platinum electrode, ITO coated glass plate, quartz crystal microbalance, quartz plates, mica and silicon substrates. Optical and gravimetric measurements based on an ultraviolet–visible absorption spectroscopy and a quartz crystal microbalance revealed that the enzyme multilayers thus prepared consist of molecular layered of the proteins. The surface morphology of such bilayer films was investigated by using atomic force microscopy. The electrochemical redox processes of the enzyme-layered films deposited either on platinum or ITO coated glass plate were investigated. The response current of cholesterol oxidase electrode with concentration of cholesterol was investigated at length.  相似文献   

16.
Constructing anti-fouling and self-cleaning membrane surfaces based on covalent attachment of trypsin on poly(methacrylic acid)-graft-polyethersulfone (PMAA-g-PES) membrane was reported. The carboxylic acid groups enriched on asymmetric PMAA-g-PES membrane surface were activated with 1-ethyl-(3-3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) and employed as chemical anchors for the conjugation with amino groups of trypsin. Activity assays showed that such chemically immobilized trypsin was much more active and stable than that of the physically adsorbed counterpart. Trypsin covalently attached on membrane surface could substantially resist protein fouling in dynamic flow process. The considerable enhancement of protein solution permeation flux was observed as a consequence of rapid enzymatic degradation of protein deposited onto membrane surface. The permeation flux of the membrane could be recovered upon simple hydraulic flush after protein filtration, suggesting superior self-cleaning property. After multi-cycle BSA filtration over 15-day period, the active self-cleaning membrane maintained more than 95.0% of its initial flux.  相似文献   

17.
The ability of amphiphilic block copolymers that consist of polyethylenimine (PEI) and poly(L-lactide) (PLLA) to modulate the delivery of plasmid DNA was evaluated. Folate-polyethylenimine-block-poly(l-lactide) (folate-PEI-PLLA) was synthesized by linking folic acid and PLLA to PEI diamine. Water-soluble polycation PEI provides gene-loading capability. Additionally, PEI is considered to exhibit high transfection efficiency and endosomal disrupting capacity. Hydrophobic PLLA that is incorporated into the gene delivery vector is believed to enhance the cell interactions and tissue permeability of the delivery system. Polymeric carrier containing folic acid is expected to be able to identify tumor surface receptors and transfect cells by receptor-mediated endocytosis. The results of agarose retardation assay indicated that the folate-PEI-PLLA began to form polyplexes at a polymer/DNA weight ratio (P/D) of over 10, whereas branched polyethylenimine (B-PEI) formed polyplexes with DNA at a ratio of above 1. The spherical particle morphology was supplemented with a particle size of approximately 100 nm at 10 P/D ratio. The results indicated that folate-PEI-PLLA with proper PEI/PLLA ratio effectively reduced cytotoxicity and maintained acceptable transfection efficiency. Low cytotoxicity of the folate-PEI-PLLA gives an advantage to high-dose administration.  相似文献   

18.
The purpose of this research was to develop and characterize a gene delivery vehicle with a poly(ethylene glycol) (PEG) backbone with the aim of overcoming limitations, such as cytotoxicity and rapid clearance, associated with current commonly used non-viral carriers. PEG was functionalized with DNA-binding peptides (DBPs) to make a vehicle (DBP-PEG) capable of condensing DNA. Complexes of plasmid DNA and DBP-PEG were formed and characterized by measuring particle size, zeta potential, and transfection efficiency as a function of N:P charge ratios (DBP-PEG amino groups:DNA phosphate). Dynamic light scattering showed that DBP-PEG was able to condense DNA efficiently resulting in a population of particles in the range of 250-300 nm. Neutral or slightly positive zeta potentials were measured for charge ratios of 3.5:1 and greater. DBP-PEG/DNA complexes, made with plasmids encoding the green fluorescent protein (GFP) and beta-Galactosidase (beta-Gal) genes, were used to transfect Chinese hamster ovary (CHO) cells. DBP-PEG/DNA was capable of transfecting cells and maximum transfection efficiency was observed for N:P ratios from 4:1 to 5:1, corresponding to zeta potentials from -4 to +1.6 mV. The effect of the DBP-PEG vehicle on cell viability was assayed. DBP-PEG was associated with a higher percentage of viable cells ( approximately 95%) than either polyethylenimine (PEI) or poly-L-lysine (PLL), and with transfection efficiency greater than PLL, but with somewhat lower than PEI. The results of this work demonstrate that PEG can be used as the backbone for gene delivery vehicles.  相似文献   

19.
Tumor-targeting DNA complexes which can readily be generated by the mixing of stable components and freeze-thawed would be very advantageous for their subsequent application as medical products. Complexes were generated by the mixing of plasmid DNA, linear polyethylenimine (PEI22, 22 kDa) as the main DNA condensing agent, PEG-PEI (poly(ethylene glycol)-conjugated PEI) for surface shielding, and Tf-PEG-PEI (transferrin-PEG-PEI) to provide a ligand for receptor-mediated cell uptake. Within the shielding conjugates, PEG chains of varying size (5, 20, or 40 kDa) were conjugated with either linear PEI22 (22 kDa) or branched PEI25 (25 kDa). The three polymer components were mixed together at various ratios with DNA; particle size, surface charge, in vitro transfection activity, and systemic gene delivery to tumors was investigated. In general, increasing the proportion of shielding conjugate in the complex reduced surface charge, particle size, and in vitro transfection efficiency in transferrin receptor-rich K562 cells. The particle size or surface charge of the complexes containing the PEG-PEI conjugate did not significantly change after freeze-thawing, while complexes without the shielding conjugate aggregated. Complexes containing PEG-PEI conjugate efficiently transfected K562 cells after freeze-thawing. Furthermore the systemic application of freeze-thawed complexes exhibited in vivo tumor targeted expression. For complexes containing the luciferase reporter gene the highest expression was found in tumor tissue of mice. An optimum formulation for in vivo application, PEI22/Tf-PEG-PEI/PEI22-PEG5, containing plasmid DNA encoding for the tumor necrosis factor (TNF-alpha), inhibited tumor growth in three different murine tumor models. These new DNA complexes offer simplicity and convenience, with tumor targeting activity in vivo after freeze-thawing.  相似文献   

20.
Qin Z  Liu W  Li L  Guo L  Yao C  Li X 《Bioconjugate chemistry》2011,22(8):1503-1512
As alternatives of viral and cationic lipid gene carriers, cationic polymer-based vectors may provide flexible chemistry for the attachment of targeting moieties. In this report, galactosylated N-2-hydroxypropyl methacrylamide-b-N-3-guanidinopropyl methacrylamide block copolymers (galactosylated HPMA-b-GPMA block copolymers, or abbreviated as GHG) were prepared in order to develop hepatocyte targeting gene transfection carriers. The block copolymers were synthesized by aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization of N-2-hydroxypropyl methacrylamide (HPMA) and N-3-aminopropyl methacrylamide (APMA), followed by galactosylation and guanidinylation. The molecular weight of GHG copolymers determined by static light scattering method was in the range from 48?600 to 76?240 g/mol. In addition, the galactose content in the GPMA block in the copolymers was determined to be 6.5-8.0 mol % according to the sulfuric acid method. The GHG copolymers complexed completely with plasmid DNA (pDNA) to show positive zeta-potential values with diameter 100-250 nm from charge ratio of 4, which demonstrated the excellent DNA condensing ability of guanidino groups. Furthermore, the MTT assay data of GHG/pDNA complexes on HepG2 cells and HeLa cells indicated that GHG copolymers had significantly lower cytotoxicity than PEI. In addition, the copolymers with GPMA component from 30.23% showed higher transfection efficiency than PEI at charge ratio of 12 in HepG2 cells. The result revealed that the conjugation of galactose groups in the copolymers brought asialoglycoprotein-receptor (ASGP-R) mediated transfection. The employing of HPMA component decreased the aggregation of protein in transfection presence of serum. The GHG copolymers combined the advantages of galactose moieties, guanidino groups, and HPMA component might show potential in safe hepatocyte targeting gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号