首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
植物含有多种富含亮氨酸重复序列(LRRs)结构的蛋白质,它们在植物天然免疫中发挥着重要作用。参与植物防御反应的LRR型蛋白家族包括:类受体蛋白激酶、抗病基因编码蛋白质、多聚半乳糖醛酸酶抑制蛋白和伸展蛋白家族。最近,人们发现植物免疫系统包含:病原相关分子模式(PAMP)激发的免疫性(PTI),即类受体蛋白激酶识别病原菌PAMPs,启动植物防卫反应;病原菌效应子激发的免疫性(ETI),即抗病基因编码蛋白质识别效应子,启动植物防卫反应。除此之外,细胞壁是植物细胞的天然保护屏障。多聚半乳糖醛酸酶抑制蛋白和伸展蛋白通过维护细胞壁,抵御病原菌入侵。我们综述了植物中LRRs蛋白的结构特征与不同种类的LRR蛋白介导免疫反应的分子机制,讨论了LRR型蛋白在植物免疫过程中的意义及存在的问题,指出搜寻配体和下游信号分子将是LRR型蛋白研究热点。  相似文献   

2.
类受体蛋白激酶(receptor-like protein kinase,RLK)是植物信号转导网络中的重要成员,参与介导生长、发育以及逆境胁迫应答等多种细胞代谢过程.在植物细胞中已发现和克隆了富含亮氨酸重复区型(LRR)、凝集素型(lectin-like)和细胞壁相联型(WAK)等不同的RLK亚家族.这些RLK能够感受多种发育和外界环境胁迫信号, 并在植物对非生物胁迫的响应过程中发挥重要的调控作用.本文结合当今国内外研究进展,简述植物RLK的典型结构域特征,详细介绍多种RLK在植物逆境信号识别与转导中发挥的作用,同时对RLK在非生物胁迫应答中的具体作用机制进行了探讨.  相似文献   

3.
生长素调控植物气孔发育的研究进展   总被引:2,自引:0,他引:2  
气孔是分布于植物表皮由保卫细胞围成的小孔, 是植物体与外界环境进行水分和气体交换的重要通道, 通过影响光合作用、蒸腾作用及一系列生物学过程来促进植物适应环境的变化。生长素是最早被发现的植物激素, 在植物生长发育中发挥重要作用。近年来的研究表明, 生长素通过载体蛋白-TIR1/AFB受体-AUXIN/IAA-ARFs信号通路, 调控STOMAGEN的表达; 之后, 经STOMAGEN-类LRR受体蛋白激酶ERf-MAPKs级联反应激酶-SPCH转录因子信号通路, 启动气孔的发育进程。EPF1、EPF2和类LRR受体蛋白激酶TMM不是该过程的必需元件。生长素对气孔的调控受光信号影响, 光信号通路组分E3泛素连接酶COP1位于MAPKs激酶的上游, 参与气孔的发育调控。  相似文献   

4.
自然界中植物的生长发育受到各种环境变化的影响。为了响应外界各种环境条件,植物演化出一系列识别和传递环境信号的蛋白分子,其中比较典型的是植物细胞质膜上的类受体蛋白激酶(RLKs)。凝集素类受体蛋白激酶(LecRLKs)是类受体蛋白激酶家族中的一个亚族,它主要包含3个结构域:细胞外凝集素结构域、跨膜结构域和细胞内激酶结构域。根据细胞外凝集素结构域的不同,LecRLKs可分为3种不同类型:L、G和C型。近年来,研究表明LecRLKs在植物生物/非生物胁迫和发育调控中发挥非常重要的作用。该文综述了植物凝集素类受体蛋白激酶的研究历史、结构特点、分类以及生物学功能,并重点阐述凝集素类受体蛋白激酶在植物生物/非生物胁迫响应和调控发育方面的功能。对不同类型和不同功能的植物凝集素类受体蛋白激酶进行阐述将有利于对该类蛋白开展功能研究,并为作物改良提供有益借鉴。  相似文献   

5.
植物LRR型类受体蛋白激酶在植物生命活动中发挥着重要作用。前期研究发现,大豆(Glycine max)LRR型类受体蛋白激酶基因GmSARK可能参与调控大豆叶片的衰老过程。利用CaMV35S启动子驱动组成型过表达GmSARK基因可导致转基因植株出现致死表型,据此构建了可诱导型启动子GVG驱动GmSARK基因过表达的双元表达载体,转化野生型拟南芥(Arabidopsis thaliana)并获得了多株转基因植株。研究结果表明,外源施加诱导物地塞米松可引起GmSARK基因在转基因植株中过表达,并导致转基因植株出现叶片变黄下卷和生长受抑制等表型;外源细胞分裂素处理可以抑制GmSARK的表达,但是不能逆转GmSARK过表达所引起的上述变化。  相似文献   

6.
自然界中植物的生长发育受到各种环境变化的影响。为了响应外界各种环境条件,植物演化出一系列识别和传递环境信号的蛋白分子,其中比较典型的是植物细胞质膜上的类受体蛋白激酶(RLKs)。凝集素类受体蛋白激酶(LecRLKs)是类受体蛋白激酶家族中的一个亚族,它主要包含3个结构域:细胞外凝集素结构域、跨膜结构域和细胞内激酶结构域。根据细胞外凝集素结构域的不同, LecRLKs可分为3种不同类型:L、G和C型。近年来,研究表明LecRLKs在植物生物/非生物胁迫和发育调控中发挥非常重要的作用。该文综述了植物凝集素类受体蛋白激酶的研究历史、结构特点、分类以及生物学功能,并重点阐述凝集素类受体蛋白激酶在植物生物/非生物胁迫响应和调控发育方面的功能。对不同类型和不同功能的植物凝集素类受体蛋白激酶进行阐述将有利于对该类蛋白开展功能研究,并为作物改良提供有益借鉴。  相似文献   

7.
植物LRR型类受体蛋白激酶在植物生命活动中发挥着重要作用。前期研究发现, 大豆(Glycine max)LRR型类受体蛋白激酶基因GmSARK可能参与调控大豆叶片的衰老过程。利用CaMV 35S启动子驱动组成型过表达GmSARK基因可导致转基因植株出现致死表型, 据此构建了可诱导型启动子GVG驱动GmSARK基因过表达的双元表达载体, 转化野生型拟南芥(Arabidopsis thaliana)并获得了多株转基因植株。研究结果表明, 外源施加诱导物地塞米松可引起GmSARK基因在转基因植株中过表达, 并导致转基因植株出现叶片变黄下卷和生长受抑制等表型; 外源细胞分裂素处理可以抑制GmSARK的表达, 但是不能逆转GmSARK过表达所引起的上述变化。  相似文献   

8.
植物类受体蛋白激酶的研究进展   总被引:3,自引:0,他引:3  
植物类受体蛋白激酶(receptor-like protein kinase,RLKs)通过胞外结构域识别病原信号分子,发生磷酸化、去磷酸化反应而开启或关闭下游靶蛋白,调节植物固有免疫反应,诱导抗病防御反应.目前对植物类受体蛋白激酶的功能、信号传导和配体识别等方面的研究已成为该领域的重点.本文对近年来国内外有关植物类受体蛋白激酶的结构、功能及其在植物抗病防御反应中的作用研究进行综述,为今后进一步深入研究植物类受体蛋白激酶的生理生化功能及应用提供参考.  相似文献   

9.
体细胞胚胎发生相关类受体蛋白激酶基因(SERK)的研究进展   总被引:3,自引:1,他引:2  
植物体内存在一个编码富亮氨酸重复受体蛋白激酶、与体细胞胚胎发生相关的类受体蛋白激酶基因(SERK)大家族,其在旱期胚胎、小孢子、成熟胚珠和维管组织中表达.文章从SERK的结构、编码的蛋白、基因表达、功能以及信号转导介绍了SERK的研究进展.  相似文献   

10.
受体酪氨酸蛋白激酶是细胞信号转导进行的关键信号酶,在生长因子调控细胞生长、发育与功能的过程中起着重要的生理作用.本文主要介绍生长因子受体酪氨酸蛋白激酶的分类、结构与功能及其部分相关信号转导机制的研究进展.  相似文献   

11.
NBS-LRR (nucleotide-binding site-leucine-rich repeat), LRR-RLK (LRR-receptor-like kinase), and LRR-only are the three major LRR-encoding genes. Owing to the crucial role played by them in plant resistance, development, and growth, extensive studies have been performed on the NBS-LRR and LRR-RLK genes. However, few studies have focused on these genes collectively; they may co-vary as all of them contain LRR motifs. To investigate their common evolutionary patterns, all major classes of LRR-encoding genes were identified in 12 plant species, and particularly compared in two pairs of close relatives, Arabidopsis thaliana-A. lyrata (At-Al) and Zea mays-Sorghum bicolor. Our results showed that these genes co-vary significantly in terms of their numbers between species and that the genes with certain evolutionary parameters are most likely to have similar functions. The development-related genes have clear orthologous relationships between closely related species, as well as lower nucleotide divergence, and Ka/Ks ratio. In contrast, resistance-related genes have exactly opposite characteristics and favor 11-15 LRRs per gene. This association could be very useful in predicting the function of LRR-encoding genes. The presence of co-variation suggests that LRRs, combined with other domains, can work better in some common functions. In order to cooperate efficiently, there should be balanced gene numbers among the different gene classes.  相似文献   

12.
Leucine-rich repeat (LRR) receptor-like kinase (RLK) proteins play key roles in a variety of biological pathways. In a previous study, we analyzed the members of the rice LRR-RLK gene family using in silico analysis. A total of 23 LRR-RLK genes were selected based on the expression patterns of a genome-wide dataset of microarrays. The Oryza sativa gamma-ray induced LRR-RLK1 (OsGIRL1) gene was highly induced by gamma irradiation. Therefore, we studied its expression pattern in response to various different abiotic and phytohormone treatments. OsGIRL1 was induced on exposure to abiotic stresses such as salt, osmotic, and heat, salicylic acid (SA), and abscisic acid (ABA), but exhibited downregulation in response to jasmonic acid (JA) treatment. The OsGIRL1 protein was clearly localized at the plasma membrane. The truncated proteins harboring juxtamembrane and kinase domains (or only harboring a kinase domain) exhibited strong autophosphorylation. The biological function of OsGIRL1 was investigated via heterologous overexpression of this gene in Arabidopsis plants subjected to gamma-ray irradiation, salt stress, osmotic stress, and heat stress. A hypersensitive response was observed in response to salt stress and heat stress, whereas a hyposensitive response was observed in response to gamma-ray treatment and osmotic stress. These results provide critical insights into the molecular functions of the rice LRR-RLK genes as receptors of external signals.  相似文献   

13.
14.
Plant receptor-like protein kinases (RLKs) are transmembrane proteins with an extracellular domain and an intracellular kinase domain, which enable plant perceiving diverse extracellular stimuli to trigger the intracellular signal transduction. The somatic embryogenesis receptor kinases (SERKs) code the leucine-rich-repeat receptor-like kinase (LRR-RLK), and have been demonstrated to associate with multiple ligand-binding receptors to regulate plant growth, root development, male fertility, stomatal development and movement, and immune responses. Here, we focus on the progress made in recent years in understanding the versatile functions of Arabidopsis SERK proteins, and review SERK proteins as co-receptor to perceive different endogenous and environmental cues in different signaling pathway, and discuss how the kinase activity of SERKs is regulated by various modification.  相似文献   

15.
Li J  Wen J  Lease KA  Doke JT  Tax FE  Walker JC 《Cell》2002,110(2):213-222
Brassinosteroids regulate plant growth and development through a protein complex that includes the leucine-rich repeat receptor-like protein kinase (LRR-RLK) brassinosteroid-insensitive 1 (BRI1). Activation tagging was used to identify a dominant genetic suppressor of bri1, bak1-1D (bri1-associated receptor kinase 1-1Dominant), which encodes an LRR-RLK, distinct from BRI1. Overexpression of BAK1 results in elongated organ phenotypes, while a null allele of BAK1 displays a semidwarfed phenotype and has reduced sensitivity to brassinosteroids (BRs). BAK1 is a serine/threonine protein kinase, and BRI1 and BAK1 interact in vitro and in vivo. Expression of a dominant-negative mutant allele of BAK1 causes a severe dwarf phenotype, resembling the phenotype of null bri1 alleles. These results indicate BAK1 is a component of BR signaling.  相似文献   

16.
Molecular mechanisms that distinguish self and non-self are fundamental in innate immunity to prevent infections in plants and animals. Recognition of the conserved microbial components triggers immune responses against a broad spectrum of potential pathogens. In Arabidopsis, bacterial flagellin was perceived by a leucine-rich repeat-receptor-like kinase (LRR-RLK) FLS2. Upon flagellin perception, FLS2 forms a complex with another LRR-RLK BAK1. The intracellular signaling events downstream of FLS2/BAK1 receptor complex are still poorly understood. We recently identified a receptor-like cytoplasmic kinase (RLCK) BIK1 that associates with flagellin receptor complex to initiate plant innate immunity. BIK1 is rapidly phosphorylated upon flagellin perception in an FLS2- and BAK1-dependent manner. BAK1 directly phosphorylates BIK1 with an in vitro kinase assay. Plants have evolved a large number of RLCK genes involved in a wide range of biological processes. We provided evidence here that additional RLCKs could also be phosphorylated by flagellin and may play redundant role with BIK1 in plant innate immunity.  相似文献   

17.
Leucine-rich-repeat receptor-like kinases (LRR-RLKs) play central roles in sensing various signals to regulate plant development and environmental responses. The extracellular domains (ECDs) of plant LRR-RLKs contain LRR motifs, consisting of highly conserved residues and variable residues, and are responsible for ligand perception as a receptor or co-receptor. However, there are few comprehensive studies on the ECDs of LRR-RLKs due to the difficulty in effectively identifying the divergent LRR repeats. In the current study, an efficient LRR motif prediction program, the “Phyto-LRR prediction” program, was developed based on the position-specific scoring matrix algorithm (PSSM) with some optimizations. This program was trained by 16-residue plant-specific LRR-highly conserved segments (HCS) from LRR-RLKs of 17 represented land plant species and a database containing more than 55,000 predicted LRRs based on this program was constructed. Both the prediction tool and database are freely available at http://phytolrr.com/ for website usage and at http://github.com/phytolrr for local usage. The LRR-RLKs were classified into 18 subgroups (SGs) according to the maximum-likelihood phylogenetic analysis of kinase domains (KDs) of the sequences. Based on the database and the SGs, the characteristics of the LRR motifs in the ECDs of the LRR-RLKs were examined, such as the arrangement of the LRRs, the solvent accessibility, the variable residues, and the N-glycosylation sites, revealing a comprehensive profile of the plant LRR-RLK ectodomains. The “Phyto-LRR prediction” program is effective in predicting the LRR segments in plant LRR-RLKs, which, together with the database, will facilitate the exploration of plant LRR-RLKs functions. Based on the database, comprehensive sequential characteristics of the plant LRR-RLK ectodomains were profiled and analyzed.  相似文献   

18.
A putative leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene together with its 5′ and 3′ untranslated regions of jute (Corchorus olitorius L.) has been identified and sequenced. The gene is 3,371 bp long containing two exons and one intron. The coding sequence of the gene is 2,879 bp long encoding a peptide of 957 amino acids. The predicted protein contains several domains and motifs characteristic of a transmembrane protein kinase. It is complete with domains for an N-terminal leucine-rich repeat and a protein kinase core, an active site for serine/threonine protein kinase, an ATP binding conserved site and a transmembrane region. Expression of the gene is induced by low temperature, high salt concentration, dehydration, abscisic acid treatment, and fungal infection, suggesting the involvement of the gene in multiple stress response pathways in jute (C. olitorius L.). A possible mechanism of the role of the gene in signal transduction and environmental stress response is discussed. To date, LRR-RLK is the only jute gene which has been completely sequenced and characterized.  相似文献   

19.
In plants, root system architecture is determined by the activity of root apical meristems, which control the root growth rate, and by the formation of lateral roots. In legumes, an additional root lateral organ can develop: the symbiotic nitrogen-fixing nodule. We identified in Medicago truncatula ten allelic mutants showing a compact root architecture phenotype (cra2) independent of any major shoot phenotype, and that consisted of shorter roots, an increased number of lateral roots, and a reduced number of nodules. The CRA2 gene encodes a Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that primarily negatively regulates lateral root formation and positively regulates symbiotic nodulation. Grafting experiments revealed that CRA2 acts through different pathways to regulate these lateral organs originating from the roots, locally controlling the lateral root development and nodule formation systemically from the shoots. The CRA2 LRR-RLK therefore integrates short- and long-distance regulations to control root system architecture under non-symbiotic and symbiotic conditions.  相似文献   

20.
The Arabidopsis FLAGELLIN SENSITIVE2 (FLS2) protein is a leucine-rich repeat receptor-like kinase (LRR-RLK) that plays important roles in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The binding of bacterial flagellin, one of the PAMPs, to the extracellular domain of FLS2 leads to activation of signaling cascades resulting in activation or repression of a specific set of genes involved in plant defense. The mechanisms at the cell membrane that lead to the activation of this signalling pathway are, however, not fully understood. Recently, we have shown that after ligand-treatment the mobility of FLS2 in the cell membrane is reduced and that the activation of FLS2 does not involve its constitutive or ligand-dependent homodimerization. Our data together with recently published reports suggest that FLS2 activation involves its association with other proteins, including BRI1-associated kinase 1 (BAK1), another LRR-RLK, and localization to less mobile areas, probably lipid rafts, in a ligand-dependent manner to initiate PTI.Key words: PTI, BiFC, flg22, FLS2, FRAP, FRET, membrane protein, RLK  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号