首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The change in stored carbon (C) stocks was assessed for a 700 km~2 area where forestcover decreased from 60% to 10% in the last 30 years. At the same time, the area under coffee increased from 7% to 70% with a gradual evolution from open "sun coffee" systems to multi-strata "shade coffee" systems that provide a partial compensation for C loss. The use of a generic tropi-cal forest rather than tree-specific allometric equation can lead to substantial (up to 100%) overes-timates of aboveground biomass depending on wood density and tree shape. The shoot: root ratio (biomass) of coffee shifted with age, from the 4∶1 value often assumed for tropical trees to 2∶1.Annual aboveground C stock accumulation rates during the establishment stage after slash-and-burn land clearing were 1, close to 2 or 3.5 Mg C ha~(-1)a~(-1) for sun coffee, shade coffee and fallowregrowth, respectively. Forest remnants, shade coffee and sun coffee had soil C stocks in the up-per 30 cm of the soil that were 79%, 60% or 45%, respectively, of the values expected for primary forest in Sumatra. Total C stock (time averaged, above-0.3 m in the soil) for forest, shade and sun coffee was 262, 82 and 52 Mg C ha~(-1), respectively. In the 1970-1984 period, while forest cover was reduced from 59.5% to 19.7%, the landscape lost on average 6.8 Mg C ha~(-1) a~(-1). In the1984-2000 period forest cover was further reduced to 12.6%, but the landscape lost only 0.39 MgC ha~(-1) a~(-1), as forest loss was partially compensated by an increase in shade coffee systems. Conversion of all current sun coffee to shade coffee systems while protecting the remaining forest,could increase average landscape level C stocks by 10 Mg ha~(-1) over a time frame of say 20 years,or 0.5 Mg C ha~(-1) a~(-1).  相似文献   

2.
张小全  陈先刚  武曙红 《生态学报》2004,24(9):2068-2073
土地利用、土地利用变化和林业 (L U L U CF)活动是引起大气温室气体浓度上升的主要因素之一 ,评价、监测 L UL UCF活动的碳源 /汇功能还存在很大的不确定性。近年来我国在该方面开展了一些研究和测定工作 ,但研究力度还远远不够 ,研究方法还存在一些问题。针对 L U L UCF活动对碳贮量影响的测定和监测中的碳库选择、监测间隔期、样地数量以及土壤容重影响和校正等有关方法学问题进行了阐述 ,以期为我国该方面的研究和监测有所裨益。  相似文献   

3.
胡莹洁  李月  孔祥斌  段增强  陆明环 《生态学报》2018,38(13):4625-4636
分析北京市农用地碳储量对土地利用变化的响应,对快速城市化和工业化区域及全国农用地低碳利用调控具有重要意义。利用1980年第二次土壤普查数据与2010年测土配方施肥项目成果土壤数据核算北京市农用地表层土壤碳储量,利用生物量遥感信息(NDVI)模型反演林地、草地植被碳储量,对北京市土地利用变化造成的农用地碳储量变化进行研究,结果表明:1)1980-2010年,北京市农用地碳储量由75.29 Tg-C增至81.13Tg-C,增加5.83 Tg-C,其中,土壤碳储量减少7.51 Tg-C,植被碳储量增加13.34 Tg-C;2)30年间,北京市农用地面积减少14.11×104 hm2,其中,耕地流失最为显著,主要去向为建设用地和林地,林地面积略有增加;3)北京市用地类型保持不变的农用地土壤碳储量减少297.63×104 t,植被碳储量增加1095.21×104 t,共计增加797.58×104 t,其中,用地类型保持不变的耕地、林地碳储量增加,草地碳储量减少;4)30年间,土地利用类型转化使北京市农用地土壤碳储量减少75.71×104 t,植被碳储量增加212.49×104 t,共计增加136.78×104 t,其他用地类型转为林地使碳储量增加,有利于碳汇的形成,林地转出为其他用地类型均会造成一定碳排放;5)平原造林、退耕还林等工程有利于增加北京市农用地固碳量。未来北京市可通过控制农用地面积减少量,优化农用地内部结构,降低用地类型间的转换频率以提高农用地碳储量。研究可为其他区域及全国在快速城市化工业化过程中提升农用地碳储量提供一定参考。  相似文献   

4.
Soil carbon stocks and land use change: a meta analysis   总被引:71,自引:0,他引:71  
The effects of land use change on soil carbon stocks are of concern in the context of international policy agendas on greenhouse gas emissions mitigation. This paper reviews the literature for the influence of land use changes on soil C stocks and reports the results of a meta analysis of these data from 74 publications. The meta analysis indicates that soil C stocks decline after land use changes from pasture to plantation (?10%), native forest to plantation (?13%), native forest to crop (?42%), and pasture to crop (?59%). Soil C stocks increase after land use changes from native forest to pasture (+ 8%), crop to pasture (+ 19%), crop to plantation (+ 18%), and crop to secondary forest (+ 53%). Wherever one of the land use changes decreased soil C, the reverse process usually increased soil carbon and vice versa. As the quantity of available data is not large and the methodologies used are diverse, the conclusions drawn must be regarded as working hypotheses from which to design future targeted investigations that broaden the database. Within some land use changes there were, however, sufficient examples to explore the role of other factors contributing to the above conclusions. One outcome of the meta analysis, especially worthy of further investigation in the context of carbon sink strategies for greenhouse gas mitigation, is that broadleaf tree plantations placed onto prior native forest or pastures did not affect soil C stocks whereas pine plantations reduced soil C stocks by 12–15%.  相似文献   

5.
A model was developed to calculate carbon fluxes from agricultural soils. The model includes the effects of crop (species, yield and rotation), climate (temperature, rainfall and evapotranspiration) and soil (carbon content and water retention capacity) on the carbon budget of agricultural land. The changes in quality of crop residues and organic material as a result of changes in CO2 concentration and changed management were not considered in this model. The model was parameterized for several arable crops and grassland. Data from agricultural, meteorological, soil, and land use databases were input to the model, and the model was used to evaluate the effects of different carbon dioxide mitigation measures on soil organic carbon in agricultural areas in Europe. Average carbon fluxes under the business as usual scenario in the 2008–2012 commitment period were estimated at 0.52 tC ha?1 y?1 in grassland and ?0.84 tC ha?1 y?1 in arable land. Conversion of arable land to grassland yielded a flux of 1.44 tC ha?1 y?1. Farm management related activities aiming at carbon sequestration ranged from 0.15 tC ha?1 y?1 for the incorporating of straw to 1.50 tC ha?1 y?1 for the application of farmyard manure. Reduced tillage yields a positive flux of 0.25 tC ha?1 y?1. The indirect effect associated with climate was an order of magnitude lower. A temperature rise of 1 °C resulted in a ?0.05 tC ha?1 y?1 change whereas the rising CO2 concentrations gave a 0.01 tC ha?1 y?1 change. Estimates are rendered on a 0.5 × 0.5° grid for the commitment period 2008–2012. The study reveals considerable regional differences in the effectiveness of carbon dioxide abatement measures, resulting from the interaction between crop, soil and climate. Besides, there are substantial differences between the spatial patterns of carbon fluxes that result from different measures.  相似文献   

6.
National estimates of changes in the amount of soil organic carbon (SOC) in cropland requires an assessment of uncertainty for accounting and reporting under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. Canada has data sets on SOC stocks in croplands, historical changes in SOC levels due to management practices, and historical changes in the area of land devoted to certain soil management practices. We conducted an analysis of uncertainty of the change in SOC levels due to management practices in Canada from 1991 to 2001 using Monte Carlo analysis and a simple model. Probability distribution functions were determined for each of the inputs of the model, enabling us to assess the uncertainty for the output. The storage rate of SOC in cropland soils of Canada for the 10‐year period ranged from 3.2 to 8.3 Mt C yr?1 at 95% confidence, with a mean of 5.7 Mt C yr?1. Approximately 67% (about 3.8 Mt C yr?1) of the increase in SOC storage in Canada occurred in Saskatchewan where the cropland area under no‐till increased from 10% to 35%, and the area of summer‐fallow declined from 43% to 20% during the study period. The large uncertainty in the effect of no‐till on SOC stock changes in the Gray‐Brown Luvisols of Ontario contributed most to the variance in the model output. If trends in agricultural management continue for the next 10‐year census period, the estimated SOC storage would comprise between 7% and 19% of the gap required to achieve the 6% reduction in 1990 greenhouse gas emission levels for Canada under the Kyoto Protocol.  相似文献   

7.
荣丽  李守剑  李贤伟  张健  王鹏 《生态学报》2011,31(1):137-144
由于土壤活性有机碳可以在土壤全碳变化之前反映土壤因管理措施和环境引起的微小的变化,又直接参与土壤微生物化学转化过程,对土壤碳平衡和土壤化学、土壤肥力保持具有重要意义。因此,采用原状土芯(intact core)法,探讨了4种退耕还林模式--光皮桦(Betula luminifera)与扁穗牛鞭草(Hemarthria compressa)复合模式、扁穗牛鞭草草地、柳杉(Cryptameria fortunei)人工林、光皮桦人工林细根(草根)分解过程中的C动态以及土壤活性有机碳变化。研究结果表明,各模式细根(草根)中的C表现为净释放,其质量残留率符合单指数模型(P<0.01)。光皮桦与扁穗牛鞭草复合模式下的土壤微生物量碳(SMBC)、水溶性有机碳(WSOC)、易氧化碳(ROC)、总有机碳(TOC)都大于其他3种模式。4种模式下的SMBC对土壤TOC的贡献分别是1.2%-3.3%、0.7%-1.5%、0.8%-2.2%、0.5%-0.8%;光皮桦与扁穗牛鞭草复合模式的ROC/TOC大于其他3种模式模式;各模式土壤ROC含量与土壤TOC呈极显著正相关关系(P<0.05)。以上结果显示,与其他人工林相比,光皮桦与扁穗牛鞭草复合模式土壤有机碳活性大、易转化,土壤总有机碳的高低决定了易氧化碳的丰缺。  相似文献   

8.
Khomutova  T. E.  Shirshova  L. T.  Tinz  S.  Rolland  W.  Richter  J. 《Plant and Soil》2000,219(1-2):13-19
The conversion of natural forests into cultivated lands causes changes of the carbon cycle, which are of particular importance for fragile landscapes. We examined the mobilization of organic carbon in undisturbed soil monoliths of a deciduous forest, a pine plantation, and a pasture under constant temperature (20°C) and moisture via a leaching experiment. Soil percolation was performed with synthetic rainfall solution (pH 5) for a period of 20 weeks. The leachates of the first 12 weeks were analyzed for the pH, DOC content, light absorbance at 260 and 330 nm. At the end of the experiment soil pH, total carbon, C:N ratio, content of fractions of humic substances were examined. After 20 weeks of the leaching experiment the decrease of soil total Corg reached 29, 23, and 50% in soil monoliths of deciduous forest, pasture, and coniferous forest, respectively. The amounts of DOC removed constituted 6.4, 3.8, and 6.2% of initial soil Corg, respectively. Cumulative values of DOC production decreased in the sequence coniferous forest > deciduous forest > pasture. UV-Vis absorptivities of DOC were similar in both forests and differed from those in pasture. UV-Vis characteristics showed that DOC composition changed during the experiment. The intensive soil percolation caused alterations of the properties of soil organic matter, in particular a change of fraction composition of humic substances occurred.  相似文献   

9.
陆君  刘亚风  齐珂  樊正球 《生态学报》2016,36(17):5411-5420
基于RS与GIS技术,以遥感影像数据、土地利用数据、森林资源二类调查数据为主要数据源,采用逐步回归法建立森林蓄积量定量估测模型。根据"蓄积量-生物量-碳储量"推算方法,对福州市森林植被碳储量和碳密度进行估算。建立福州市土地利用转移矩阵,分析2000—2010年土地利用变化影响下的福州市森林碳储量变化特征。结果表明:(1)根据不同的森林类型,即常绿阔叶林、常绿针叶林、针阔混交林分别建立的多元线性回归模型修正决定系数分别为0.599、0.679、0.694,通过模型适用性检验和精度验证。(2)2000年、2010年福州市森林植被碳储量总量分别为12.499Tg、12.642Tg,植被碳密度分别为18.694、18.708 t/hm~2,森林植被碳储量增加了1.430×10~5t。(3)福州市闽清县、永泰县、闽侯县的森林植被碳密度常年保持较高水平,并呈现出增长趋势;罗源县、长乐市、连江县森林植被碳密度较低,并呈现下降趋势。(4)2000—2010年,灌木和耕地是主要土地利用类型转出者,森林和建设用地是主要土地利用类型转入者。森林主要由灌木和耕地转化,主要向建设用地、耕地进行转化。由于土地利用变化,10年间福州市总碳储量减少了1.711×10~4t,其中土壤碳储量减少2.230×10~3t,植被碳储量减少1.489×10~4t。  相似文献   

10.
过去60a来,长江中下游平原的乡村地区发展迅速,引起土地利用覆被及其土壤有机碳储量明显地变化。通过选取区域代表性样方、基于1942年航片和2002年IKONOS影像研究小尺度土地利用覆被变化、土壤取样和收集1965年前土壤有机碳历史数据,用尺度推绎和蒙特卡洛不确定性分析方法,评价了19402002年长江中下游平原人口密集的乡村景观区域中土地利用覆被的面积及其030cm土壤(或底泥)有机碳储量的变化。结果表明:近60a来,在86×103km2的区域中有47%的面积发生土地利用覆被转化,其中耕地转化为非耕地的面积为21%(18×103km2)。土地利用覆被类型转化及其有机碳密度的变化导致该区域土壤有机碳储量的净增加。该区域稻田和闲置水域面积分别减少了21.5%(18.5×103km2)和6.7%(5.7×103km2),导致其土壤(或底泥)有机碳储量分别减少41.8TgC和12.9TgC;而水产养殖、非渗漏表面为主的建筑用地、种植木本作物和种植1年生作物的水浇地面积分别增加了14.2%(12.2×103km2)、7.7%(6.7×103km2)、3.5%(3.0×103km2)和2.0%(1.7×103km2),使其土壤(或底泥)有机碳储量分别增加32.2TgC、22.2TgC、12.2TgC和6.5TgC。近60a来,整个区域030cm土壤有机碳的储量增加了18.2TgC,其净增加的可能性为75%,形成了弱碳汇。这主要是由于区域稻田土壤有机碳密度增加了17%,使区域土壤有机碳储量增加了22.2TgC(其净增加的可能性为92%);而且,稻田转化为种植木本作物和种植1年生作物的水浇地也使区域土壤有机碳储量分别增加了1.3TgC(净增加的可能性为86%)和0.3TgC(净增加的可能性为70%);此外,闲置水域转化为水产养殖也使区域土壤有机碳储量增加1.3TgC(净增加的可能性为77%)。但是,稻田转化为水产养殖和非渗漏表面为主的建筑用地导致区域土壤有机碳储量损失6.3TgC和0.6TgC。因稻田土壤有机碳密度增加及稻田转化类型的土壤有机碳储量变化的影响,使整个区域形成弱碳汇,但如果稻田继续减少的话,很可能变成碳源。通过选取区域代表性样方、研究小尺度土地利用覆被变化、土壤取样和收集土壤历史数据,采用尺度推绎方法,研究揭示了19402002年长江中下游平原人口密集的乡村景观区域中土地利用覆被的面积及其土壤有机碳储量的变化。  相似文献   

11.
土地利用/覆被变化与景观服务:评估、制图与模拟   总被引:2,自引:0,他引:2  
从景观尺度上探讨生态系统服务功能的研究越来越引起国内外学者的重视.相比生态系统尺度,景观尺度是探索人类活动对土地利用/覆被变化影响、探究可持续景观演变机理和过程的最佳尺度.基于对当前国际学界对景观服务研究进展的系统梳理与分析,本文探讨了景观服务的内涵与分类,并对景观服务价值评估、制图与模拟等研究方法进行归纳与分析,并对景观服务的未来研究趋势进行展望.景观服务研究的未来方向应进一步明确景观服务的内涵及其分类体系,不断完善和发展景观服务评估、制图与模型模拟方法,重点开展景观格局-过程-服务-尺度长期综合研究,继续加强景观生态学及景观经济学等理论与方法在景观服务研究领域中的应用.  相似文献   

12.
通过"灭非灵"对尼罗罗非鱼(Oreochromis niloticus)(体重为34.65±5.69 g)的急性毒性试验及对鳃、肝、肾的组织学研究,从组织学角度探讨了"灭非灵"对尼罗罗非鱼的致死机理。结果表明:"灭非灵"对尼罗罗非鱼的24、48、72和96 h-LC50分别为0.148、0.103、0.048和0.032 mg·L-1;其组织病理学损伤表现为鳃小片萎缩、卷曲、坏死、脱落和融合,鳃间隙分泌大量的粘液细胞;肝细胞肿大,空泡化,细胞界限模糊,细胞核固缩;肾细胞肿大,充血;"灭非灵"对3种组织的损伤程度为鳃肝脏肾脏,3种组织的损伤很有可能是造成尼罗罗非鱼死亡的主要原因。  相似文献   

13.
Northern Europe supports large soil organic carbon (SOC) pools and has been subjected to high frequency of land‐use changes during the past decades. However, this region has not been well represented in previous large‐scale syntheses of land‐use change effects on SOC, especially regarding effects of afforestation. Therefore, we conducted a meta‐analysis of SOC stock change following afforestation in Northern Europe. Response ratios were calculated for forest floors and mineral soils (0–10 cm and 0–20/30 cm layers) based on paired control (former land use) and afforested plots. We analyzed the influence of forest age, former land‐use, forest type, and soil textural class. Three major improvements were incorporated in the meta‐analysis: analysis of major interaction groups, evaluation of the influence of nonindependence between samples according to study design, and mass correction. Former land use was a major factor contributing to changes in SOC after afforestation. In former croplands, SOC change differed between soil layers and was significantly positive (20%) in the 0–10 cm layer. Afforestation of former grasslands had a small negative (nonsignificant) effect indicating limited SOC change following this land‐use change within the region. Forest floors enhanced the positive effects of afforestation on SOC, especially with conifers. Meta‐estimates calculated for the periods <30 years and >30 years since afforestation revealed a shift from initial loss to later gain of SOC. The interaction group analysis indicated that meta‐estimates in former land‐use, forest type, and soil textural class alone were either offset or enhanced when confounding effects among variable classes were considered. Furthermore, effect sizes were slightly overestimated if sample dependence was not accounted for and if no mass correction was performed. We conclude that significant SOC sequestration in Northern Europe occurs after afforestation of croplands and not grasslands, and changes are small within a 30‐year perspective.  相似文献   

14.
Abstract The response of insects to monoculture plantations has mainly proceeded at the expense of natural forest areas, and is an outstanding and important issue in ecology and conservation biology, with pollination services declined around the world. In this study, species richness and distribution of hoverfly and wild bee communities were investigated in a changing tropical landscape in southern Yunnan, south‐west China by Malaise traps periodically from 2008 to 2009. Species were recorded from the traditional land use types (natural forest, grassland, shrubland and rice field fallows), and from recently established rubber plantations of different ages. Hoverflies (total 53 species) were most common in young successional stages of vegetation, including rice field fallow and shrubland. Species richness was highest in rice field fallows and lowest in forests and showed a highly significant relationship with the number of forb species and ground vegetation cover. In contrast, the highest richness of wild bees (total 44 species) was recorded from the natural forest sites, which showed a discrete bee community composition compared to the remaining habitat types. There was no significant relationship between the bee species richness and the environmental variables, including the numbers of different plant life forms, coverage of canopy and ground vegetation, successional age of vegetation and land use type. At the landscape scale, open land use systems, including young rubber plantations, are assumed to increase the species richness of hoverflies; however, this might decrease wild bee diversity. The present land use change by rubber cultivation can be expected to have negative impacts on the native wild bee communities.  相似文献   

15.
The effects of agricultural land use and management practices on soil organic carbon (SOC) are of great concern. In this study, SOC changes were investigated in sandy loam soils (Ustochrepts, USDA Soil Taxonomy) under orchard, vegetable, corn (Zea maize L.), and soybean (Glycine max L.) cultivation in northern China. The corn fields were further classified into three categories based on their inputs, i.e. high-input, mid-input, and low-input corn fields. In April 2005, a total of 197 soil samples were collected from 42 soil sites within 100 cm soil depth in Yanhuai Basin, Beijing, China. SOC contents were determined using rapid dichromate oxidation, and ANOVA statistical analysis was used to test the significances between land use and management practices at p<0.05. The results showed that: (1) the effects of land use and management practices on SOC primarily occurred within the topsoil (0–25 cm), and the SOC contents sharply decreased with the increase in soil depth. (2) SOC content and density values of orchard, vegetable, and high-input corn fields were higher than those of soybean, mid- and low-input corn fields.  相似文献   

16.
Zhang X Y  Chen L D  Fu B J  Li Q  Qi X  Ma Y 《农业工程》2006,26(10):3198-3203
The effects of agricultural land use and management practices on soil organic carbon (SOC) are of great concern. In this study, SOC changes were investigated in sandy loam soils (Ustochrepts, USDA Soil Taxonomy) under orchard, vegetable, corn (Zea maize L.), and soybean (Glycine max L.) cultivation in northern China. The corn fields were further classified into three categories based on their inputs, i.e. high-input, mid-input, and low-input corn fields. In April 2005, a total of 197 soil samples were collected from 42 soil sites within 100 cm soil depth in Yanhuai Basin, Beijing, China. SOC contents were determined using rapid dichromate oxidation, and ANOVA statistical analysis was used to test the significances between land use and management practices at p<0.05. The results showed that: (1) the effects of land use and management practices on SOC primarily occurred within the topsoil (0–25 cm), and the SOC contents sharply decreased with the increase in soil depth. (2) SOC content and density values of orchard, vegetable, and high-input corn fields were higher than those of soybean, mid- and low-input corn fields.  相似文献   

17.
The identification and quantification of natural carbon (C) sinks is critical to global climate change mitigation efforts. Tropical coastal wetlands are considered important in this context, yet knowledge of their dynamics and quantitative data are still scarce. In order to quantify the C accumulation rate and understand how it is influenced by land use and climate change, a palaeoecological study was conducted in the mangrove‐fringed Segara Anakan Lagoon (SAL) in Java, Indonesia. A sediment core was age‐dated and analyzed for its pollen and spore, elemental and biogeochemical compositions. The results indicate that environmental dynamics in the SAL and its C accumulation over the past 400 years were controlled mainly by climate oscillations and anthropogenic activities. The interaction of these two factors changed the lagoon's sediment supply and salinity, which consequently altered the organic matter composition and deposition in the lagoon. Four phases with varying climates were identified. While autochthonous mangrove C was a significant contributor to carbon accumulation in SAL sediments throughout all four phases, varying admixtures of terrestrial C from the hinterland also contributed, with natural mixed forest C predominating in the early phases and agriculture soil C predominating in the later phases. In this context, climate‐related precipitation changes are an overarching control, as surface water transport through rivers serves as the “delivery agent” for the outcomes of the anthropogenic impact in the catchment area into the lagoon. Amongst mangrove‐dominated ecosystems globally, the SAL is one of the most effective C sinks due to high mangrove carbon input in combination with a high allochthonous carbon input from anthropogenically enhanced sediment from the hinterland and increased preservation. Given the substantial C sequestration capacity of the SAL and other mangrove‐fringed coastal lagoons, conservation and restoration of these ecosystems is vitally important for climate change mitigation.  相似文献   

18.
Growing concerns about energy and the environment have led to worldwide use of bioenergy. Switching from food crops to biofuel crops is an option to meet the fast‐growing need for biofuel feedstocks. This land use change consequently affects the ecosystem carbon balance. In this study, we used a biogeochemistry model, the Terrestrial Ecosystem Model, to evaluate the impacts of this change on the carbon balance, bioenergy production, and agricultural yield, assuming that several land use change scenarios from corn, soybean, and wheat to biofuel crops of switchgrass and Miscanthus will occur. We found that biofuel crops have much higher net primary production (NPP) than soybean and wheat crops. When food crops from current agricultural lands were changed to different biofuel crops, the national total NPP increased in all cases by a range of 0.14–0.88 Pg C yr?1, except while switching from corn to switchgrass when a decrease of 14% was observed. Miscanthus is more productive than switchgrass, producing about 2.5 times the NPP of switchgrass. The net carbon loss ranges from 1.0 to 6.3 Tg C yr?1 if food crops are changed to switchgrass, and from 0.4 to 6.7 Tg C yr?1 if changed to Miscanthus. The largest loss was observed when soybean crops were replaced with biofuel crops. Soil organic carbon increased significantly when land use changed, reaching 100 Mg C ha?1 in biofuel crop ecosystems. When switching from food crops to Miscanthus, the per unit area croplands produced a larger amount of ethanol than that of original food crops. In comparison, the land use change from wheat to Miscanthus produced more biomass and sequestrated more carbon. Our study suggests that Miscanthus could better serve as an energy crop than food crops or switchgrass, considering both economic and environmental benefits.  相似文献   

19.
Precise estimations of soil organic carbon (SOC) stocks are of decided importance for the detection of C sequestration or emission potential induced by land use changes. For Germany, a comprehensive, land use–specific SOC data set has not yet been compiled. We evaluated a unique data set of 1460 soil profiles in southeast Germany in order to calculate representative SOC stocks to a depth of 1 m for the main land use types. The results showed that grassland soils stored the highest amount of SOC, with a median value of 11.8 kg m?2, whereas considerably lower stocks of 9.8 and 9.0 kg m?2 were found for forest and cropland soils, respectively. However, the differences between extensively used land (grassland, forest) and cropland were much lower compared with results from other studies in central European countries. The depth distribution of SOC showed that despite low SOC concentrations in A horizons of cropland soils, their stocks were not considerably lower compared with other land uses. This was due to a deepening of the topsoil compared with grassland soils. Higher grassland SOC stocks were caused by an accumulation of SOC in the B horizon which was attributable to a high proportion of C‐rich Gleysols within grassland soils. This demonstrates the relevance of pedogenetic SOC inventories instead of solely land use–based approaches. Our study indicated that cultivation‐induced SOC depletion was probably often overestimated since most studies use fixed depth increments. Moreover, the application of modelled parameters in SOC inventories is questioned because a calculation of SOC stocks using different pedotransfer functions revealed considerably biased results. We recommend SOC stocks be determined by horizon for the entire soil profile in order to estimate the impact of land use changes precisely and to evaluate C sequestration potentials more accurately.  相似文献   

20.
Joint Australia–Indonesia scientific workshops on the fisheries of the Arafura Sea, held in 1992 and 1994, concluded that the two countries might share stocks of the red snappers Lutjanus malabaricus and L. erythropterus and the gold-band snapper Pristipomoides multidens. At that time, no information concerning stock structure, distribution and movements of these species was available. Moreover, data on the population biology and on commercial catches were inadequate. Such data are crucial for stock assessment and for managing the stocks. Clearly, if the stocks being fished were shared, joint management would be appropriate. In order to answer the questions related to managing shared stocks, a collaborative research project was initiated by Australia (CSIRO as the lead agency) and Indonesia in 1999. The objectives were firstly, to describe the population dynamics, stock structure and biology of snappers relevant to the management of stocks shared between Australian and Indonesian fisheries; secondly, to characterize the social and financial structures of the Indonesian fishery so they could be taken into account in the development of management strategies; and thirdly, to explore ways of developing complementary management for the long term sustainability of the snapper fisheries. This project finished in 2003 and in this paper we bring together the results of the biological, genetic, population dynamics and socioeconomic research in relation to managing shared stocks in the context of managed versus unmanaged fisheries, small scale and industrial fisheries, and in both developed and developing country regulatory environments. Severe data limitations necessitated an innovative approach making use of comparative analyses, often data-poor values, and the drawing together of fishery dependent and independent data to evaluate the status of the stocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号