首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurotrophins and lung disease   总被引:3,自引:0,他引:3  
Neurotrophins are growth factors that exert multiple actions on neuronal and nonneuronal cells. Neurotrophin receptors are expressed on central and peripheral neurons, lymphocytes, monocytes, mast cells, and fibroblasts. In accordance with the distribution of their receptors, neurotrophins control the development and function of neurons and regulate inflammatory processes. Production of neurotrophins is altered in asthma, lung cancer, and pulmonary fibrosis. Evidence from animal models has implicated nerve growth factor (NGF) as a mediator of pulmonary inflammation, bronchoconstriction, and airway hyperreactivity, all of which are hallmarks of asthma. NGF regulates the growth of lung tumor cells and cultured lung fibroblasts. Thus neurotrophins, particularly NGF, are candidate molecules for regulating disease processes in asthma, lung cancer, and pulmonary fibrosis.  相似文献   

2.
Chronic inflammatory lung diseases represent a group of severe diseases with increasing prevalence as well as epidemiological importance. Inflammatory lung diseases could result from allergic or infectious genesis. There is growing evidence that the immune and nervous system are closely related not only in physiological but also in pathological reactions in the lung. Extensive communications between neurons and immune cells are responsible for the magnitude of airway inflammation and the development of airway hyperreactivity, a consequence of neuronal dysregulation. Neurotrophins are molecules regulating and controlling this crosstalk between the immune and peripheral nervous system (PNS) during inflammatory lung diseases. They are constitutively expressed by resident lung cells and produced in increasing quantities by immune cells invading the airways under inflammatory conditions. They act as activation, differentiation and survival factors for cells of both the immune and nervous system. This article will review the most recent data of neurotrophin signaling in the normal and inflamed lung and as yet unexplored, roles of neurotrophins in the complex communication within the neuroimmune network.  相似文献   

3.
Neurotrophins comprise a family of basic homodimeric proteins. The isolation of the first two neurotrophins, nerve growth factor and brain-derived neurotrophic factor, was based on the ability of these proteins to promote the survival of embryonic neurons. However, the identification of additional neurotrophins by homology screening together with recent work on these proteins has shown that neurotrophins do more than just regulate neuronal survival. Neurotrophins influence the proliferation and differentiation of neuron progenitor cells and regulate the expression of several differentiated traits of neurons throughout life. Moreover, the influence of neurotrophins on survival is more complex than originally thought; some neurons switch their survival requirements from one set of neurotrophins to another during development and several neurotrophins may be involved in regulating the survival of a population of neurons at any one time. Most of what is known of the developmental physiology of neurotrophins has come from studying neurons of the peripheral nervous system. Quite apart from the accessibility of these neurons and their progenitor cell populations, investigation of the actions of neurotrophins on several well-characterised populations of sensory neurons has permitted the age-related changes in the effects of neurotrophins to be interpreted in the appropriate developmental context. In this review I provide a chronological account of the action of neurotrophins in neuronal development with special reference to sensory neurons.  相似文献   

4.
To determine the effect of neurotrophins on the survival and morphological differentiation of CNS neurons, we examined NT2-N cells, which provide a unique culture model for terminally differentiated and polar human neurons. Here we report the development of conditions for the long-term culture of NT2-N cells in low density and in chemically defined medium. We show that NT2-N cells express rRNAs for TrkA, TrkB, and TrkC tyrosine kinase receptors and the low-affinity nerve growth factor receptor (p75NTR). All members of the nerve growth factor-related family of neurotrophic factors promote neuronal survival in long-term cultures with approximately 1 ng/ml for half-maximal survival. At high concentrations (>20 ng/ml), the neurotrophins reversed the survival-promoting effect as judged by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] conversion. In contrast to the uniform effect of all neurotrophins on neuronal survival, brain-derived neurotrophic factor selectively induced an increased dendritic complexity. These results demonstrate that NT2-N cells provide a useful model to analyze the effect of neurotrophins on the survival and morphological differentiation of CNS neurons in vitro. In addition, the data indicate that neuronal survival and the development of morphological complexity are differentially regulated in a multireceptor context.  相似文献   

5.
The pattern of retrograde axonal transport of the target-derived neurotrophic molecule, nerve growth factor (NGF), correlates with its trophic actions in adult neurons. We have determined that the NGF-related neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are also retrogradely transported by distinct populations of peripheral and central nervous system neurons in the adult. All three 125I-labeled neurotrophins are retrogradely transported to sites previously shown to contain neurotrophin-responsive neurons as assessed in vitro, such as dorsal root ganglion and basal forebrain neurons. The patterns of transport also indicate the existence of neuronal populations that selectively transport NT-3 and/or BDNF, but not NGF, such as spinal cord motor neurons, neurons in the entorhinal cortex, thalamus, and neurons within the hippocampus itself. Our observations suggest that neurotrophins are transported by overlapping as well as distinct populations of neurons when injected into a given target field. Retrograde transport may thus be predictive of neuronal types selectively responsive to either BDNF or NT-3 in the adult, as first demonstrated for NGF.  相似文献   

6.
Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75NTR and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed.  相似文献   

7.
Microglia are the resident immune cells in the central nervous system and are constantly monitoring their environment. After an insult, they are activated and secrete both pro- and anti-inflammatory mediators. Thus, they can have both detrimental and protective actions. Microglia are activated in many conditions that involve chronic inflammation such as Alzheimer's and Parkinson's diseases and in neuropathic pain. Following cerebral ischemia and stroke, microglia are activated and acutely contribute to neuronal loss and infarct damage. Chronically, in this condition, neuroprotective actions of activated microglia include clearance of the dead cells and secretion of neurotrophins. Of great interest is the recent observation that following myocardial infarction, there is increased inflammation within the hypothalamus and a marked increase in activated microglia.  相似文献   

8.
Neurotrophin-regulated signalling pathways   总被引:15,自引:0,他引:15  
Neurotrophins are a family of closely related proteins that were identified initially as survival factors for sensory and sympathetic neurons, and have since been shown to control many aspects of survival, development and function of neurons in both the peripheral and the central nervous systems. Each of the four mammalian neurotrophins has been shown to activate one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB and TrkC). In addition, each neurotrophin activates p75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor superfamily. Through Trk receptors, neurotrophins activate Ras, phosphatidyl inositol-3 (PI3)-kinase, phospholipase C-gamma1 and signalling pathways controlled through these proteins, such as the MAP kinases. Activation of p75NTR results in activation of the nuclear factor-kappaB (NF-kappaB) and Jun kinase as well as other signalling pathways. Limiting quantities of neurotrophins during development control the number of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. The neurotrophins also regulate cell fate decisions, axon growth, dendrite growth and pruning and the expression of proteins, such as ion channels, transmitter biosynthetic enzymes and neuropeptide transmitters that are essential for normal neuronal function. Continued presence of the neurotrophins is required in the adult nervous system, where they control synaptic function and plasticity, and sustain neuronal survival, morphology and differentiation. They also have additional, subtler roles outside the nervous system. In recent years, three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.  相似文献   

9.
Glucagon‐like peptide‐1 (GLP‐1)‐based therapies are currently available for the treatment of type 2 diabetes, based on their actions on pancreatic β cells. GLP‐1 is also known to exert neuroprotective actions. To determine its mechanism of action, we developed a neuron‐rich cell culture system by differentiating human neuroprogenitor cells in the presence of a combination of neurotrophins and retinoic acid. The neuronal nature of these cells was characterized by neurogenesis pathway‐specific array. GLP‐1 receptor expression was seen mainly in the neuronal population. Culture of neurons in the presence of Aβ oligomers resulted in the induction of apoptosis as shown by the activation of caspase‐3 and caspase‐6. Exendin‐4, a long‐acting analog of GLP‐1, protected the neurons from apoptosis induced by Aβ oligomers. Exendin‐4 stimulated cyclic AMP response element binding protein phosphorylation, a regulatory step in its activation. A transient transfection assay showed induction of a reporter linked to CRE site‐containing human brain‐derived neurotrophic factor promoter IV, by the growth factor through multiple signaling pathways. The anti‐apoptotic action of exendin‐4 was lost following down‐regulation of cAMP response element binding protein. Withdrawal of neurotrophins resulted in the loss of neuronal phenotype of differentiated neuroprogenitor cells, which was prevented by incubation in the presence of exendin‐4. Diabetes is a risk factor in the pathogenesis of Alzheimer's disease. Our findings suggest that GLP‐1‐based therapies can decrease the incidence of Alzheimer's disease among aging diabetic population.  相似文献   

10.
Growth factor synergism and antagonism in early neural crest development.   总被引:8,自引:0,他引:8  
This review article focuses on data that reveal the importance of synergistic and antagonistic effects in growth factor action during the early phases of neural crest development. Growth factors act in concert in different cell lineages and in several aspects of neural crest cell development, including survival, proliferation, and differentiation. Stem cell factor (SCF) is a survival factor for the neural crest stem cell. Its action is neutralized by neurotrophins, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) through apoptotic cell death. In contrast, SCF alone does not support the survival of melanogenic cells (pigment cell precursors). They require the additional presence of a neurotrophin (NGF, BDNF, or NT-3). Fibroblast growth factor-2 (FGF-2) is an important promoter of proliferation in neuronal progenitor cells. In neural crest cells, fibroblast growth factor treatment alone does not lead to cell expansion but also requires the presence of a neurotrophin. The proliferative stimulus of the fibroblast growth factor - neurotrophin combination is antagonized by transforming growth factor beta-1 (TGFbeta-1). Moreover, TGFbeta-1 promotes the concomitant expression of neuronal markers from two cell lineages, sympathetic neurons and primary sensory neurons, indicating that it acts on a pluripotent neuronal progenitor cell. Moreover, the combination of FGF-2 and NT3, but not other neurotrophins, promotes expression or activation of one of the earliest markers expressed by presumptive sympathetic neuroblasts, the norepinephrine transporter. Taken together, these data emphasize the importance of the concerted action of growth factors in neural crest development at different levels and in several cell lineages. The underlying mechanisms involve growth-factor-induced dependence of the cells on other factors and susceptibility to growth-factor-mediated apoptosis.  相似文献   

11.
The adult rat hippocampus contains fibroblast growth factor 2–responsive stem cells that are self‐renewing and have the ability to generate both neurons and glia in vitro, but little is known about the molecular events that regulate stem cell differentiation. Hippocampus‐derived stem cell clones were used to examine the effects of retinoic acid (RA) on neuronal differentiation. Exposure to RA caused an immediate up‐regulation of NeuroD, increased p21 expression, and concurrent exit from cell cycle. These changes were accompanied by a threefold increase in the number of cells differentiating into immature neurons. An accompanying effect of RA was to sustain or up‐regulate trkA, trkB, trkC, and p75NGFR expression. Without RA treatment, cells were minimally responsive to neurotrophins (NTs), whereas the sequential application of RA followed by brain‐derived neurotrophic factor or NT‐3 led to a significant increase in neurons displaying mature γ‐a‐minobutyric acid, acetylcholinesterase, tyrosine hydroxylase, or calbindin phenotypes. Although NTs promoted maturation, they had little effect on the total number of neurons generated, suggesting that RA and neurotrophins acted at distinct stages in neurogenesis. RA first promoted the acquisition of a neuronal fate, and NTs subsequently enhanced maturation by way of RA‐dependent expression of the Trk receptors. In combination, these sequential effects were sufficient to stimulate stem cell–derived progenitors to differentiate into neurons displaying a variety of transmitter phenotypes. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 65–81, 1999  相似文献   

12.
13.
Experiments dating back to the 1940''s have led to the hypothesis that the brain is an immunologically privileged site, shielding its antigens from immune recognition. The paraneoplastic Hu syndrome provides a powerful paradigm for addressing this hypothesis; it is believed to develop because small cell lung cancers (SCLC) express the neuron-specific Hu protein. This leads to an Hu-specific tumor immune response that can develop into an autoimmune attack against neurons, presumably when immune privilege in the brain is breached. Interestingly, all SCLC express the onconeural HuD antigen, and clinically useful tumor immune responses can be detected in up to 20% of patients, yet the paraneoplastic neurologic syndrome is extremely rare. We found that HuD-specific CD8+ T cells are normally present in the mouse T cell repertoire, but are not expanded upon immunization, although they can be detected after in vitro expansion. In contrast, HuD-specific T cells could be directly activated in HuD null mice, without the need for in vitro expansion. Taken together, these results demonstrate robust tolerance to the neuronal HuD antigen in vivo, and suggest a re-evaluation of the current concept of immune privilege in the brain.  相似文献   

14.
The neurotrophins exhibit neurotrophic effects on specific, partially overlapping populations of neurons both in the peripheral and the central nervous system (CNS). In the periphery, they are synthesized by a variety of nonneuronal cells, and their synthesis seems to be independent of the neuronal input. In contrast, in the CNS all neurotrophins are expressed under physiological conditions primarily by neurons. The production of NGF and BDNF is controlled by neuronal activity: up-regulation by glutamate and acetylcholine, down-regulation by gamma-aminobutyric acid. In contrast, NT-3 regulation is independent of neuronal activity, but it is up-regulated by thyroid hormones and BDNF. The latter observation suggests that NT-3 might be controlled indirectly by neuronal activity via BDNF. In peripheral nonneuronal tissues, glucocorticoid hormones down-regulate NGF mRNA levels both in vitro and in vivo. In contrast, in the CNS, neuronal production of NGF is enhanced by glucocorticoids. The rapid regulation of NGF and BDNF by subtle physiological stimuli together with the recent demonstration that the neurotrophin release neurotransmitters such as acetylcholine opens up interesting perspectives for the function of neurotrophins as mediators of neuronal plasticity. 1994 John Wiley & Sons, Inc.  相似文献   

15.
近年来,对神经营养因子(neurotrophic factors)尤其是神经营养素(neurotrophins, NTs)及其功能性受体——酪氨酸激酶受体TrkA、TrkB、TrkC的研究进展迅速.这些因子能够促进神经元的存活、生长、分化以及损伤后的修复.应用免疫组化、原位杂交和基因敲除小鼠模型等方法研究这些因子及其受体在内耳发育中的调控作用, 可以在细胞、分子水平上提供有关内耳发育机制的新认识.外源性神经营养素可能在临床治疗失聪上具有潜在的应用价值.  相似文献   

16.
This review highlights important events during the morphological development of retinal ganglion cells (RGCs), focusing on mechanisms that control axon and dendritic arborization as a means to understand synaptic connectivity with special emphasis on the role of neurotrophins during structural and functional development of RGCs. Neurotrophins and their receptors participate in the development of visual connectivity at multiple levels. In the visual system, neurotrophins have been shown to exert various developmental influences, from guiding the morphological differentiation of neurons to controlling the functional plasticity of visual circuits. This review article examines the role of neurotrophins, and in particular of BDNF, during the morphological development of RGCs, and discusses potential interactions between activity and neurotrophins during development of neuronal connectivity.  相似文献   

17.
The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal''s external environment such as the availability, or quality, of food.  相似文献   

18.
Abstract: The importance of individual members of the neurotrophin gene family for avian inner ear development is not clearly defined. Here we address the role of two neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), for innervation of the chicken cochlea. We have used defective herpes simplex virus type 1 (HSV-1) vectors, or amplicons, to express these neurotrophins in dissociated cultures of cochlear neurons. HSV-1-mediated expression of BDNF promotes neuronal survival similar to the maximal level seen by exogenously added BDNF and exceeds its potency to produce neurite outgrowth. In contrast, cochlear neurons transduced with an amplicon producing bioactive NGF show no response. These results confirm BDNF as an important mediator of neurotrophin signaling inside avian cochlear neurons. However, these neurons can be rendered NGF-responsive by transducing them with the high-affinity receptor for NGF, TrkA. This study underlines the usefulness of amplicons to study and modify neurotrophin signaling inside neurons.  相似文献   

19.
With so many neutrophins and receptors now known, how is our picture of neurotrophism changing? Recent studies on knockout mice have confirmed our expectations of neurotrophin action in neuronal development. A notable exception is the activation of TrkB, on motor neurons, by an unknown ligand. It is also clear that some neurotrophins have diverse activities and influence early developmental stages. There are interesting new data concerning the role of p75, the low affinity neurotrophin receptor, as a modulator of neurotrophin activity. Even more exciting are new studies on glia-derived neurotrophic factor (GDNF) which demonstrate that this growth factor acts as a potential protector of motor neurons and striatal dopaminergic neurons.  相似文献   

20.
Neurogenesis, the generation of new neurons from neural precursor cells (NPCs), is a multi-step process that includes the proliferation of NPCs, fate determination, migration, and neuronal maturation. Neurogenesis is regulated by several extrinsic factors,such as enriched environment, physical exercise, hormones and stress, many of which also induce the expression of neurotrophins.In this review, we summarize studies on the role of neurotrophins in neurogenesis during development and in adults.We discuss the functional significance of neurogenesis in learning and memory, and how neurotrophins regulate this process.In this context, we describe recent experiments linking adult neurogenesis to long-term synaptic plasticity in the hippocampal dentate gyrus. Further study of the relationship between neurotrophins, adult neurogenesis and dentate synaptic plasticity might provide new insights into the mechanisms by which gene-environment interactions control cognition and brain plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号