首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluating the annual sources and sinks of carbon from land-use change helps con-strain other terms in the global carbon cycle and may help countries choose how to comply with commitments for reduced emissions. This paper presents the results of recent analyses ofland-use change in China and tropical Asia. The original forest areas are estimated to have cov-ered 546×10~6 ha in tropical Asia and 425×10~6 ha in China. By 1850, 44% of China's forests had been cleared, and another 27% was lost between 1850 and 1980, leaving China with 13% forestcover (29% of the initial forest area). Tropical Asia is estimated to have lost 26% of its initial forestcover before 1850 and another 33% after 1850. The annual emissions of carbon from the two regions re-flect the different histories over the last 150 years, with China's emissions peaking in thelate 1950s (at 0.2-0.5 Pg C·a~(-1)) and tropical Asia's emissions peaking in 1990s (at 1.0 Pg C·a~(-1)). Despite the fact that most deforestation has been for new agricultural land, the majority ofthe lands cleared from forests in China are no longer croplands, but fallow or degraded shrublands.Unlike croplands, the origins of these other lands are poorly documented, and thus add consider-able uncertainty to estimates of flux before the 1980s. Nevertheless, carbon emissions from China seem to have decreased since the 1960s to nearly zero at present. In contrast, emissions of car-bon from tropical Asia were higher in the 1990s than that at any time in the past.  相似文献   

2.
Emissions of carbon from forestry and land-use change in tropical Asia   总被引:11,自引:0,他引:11  
The net emissions of carbon from forestry and changes in land use in south and southeast Asia were calculated here with a book-keeping model that used rates of land-use change and associated per hectare changes in vegetation and soil to calculate changes in the amount of carbon held in terrestrial ecosystems and wood products. The total release of carbon to the atmosphere over the period 1850–1995 was 43.5 PgC. The clearing of forests for permanent croplands released 33.5 PgC, about 75% of the total. The reduction of biomass in the remaining forests, as a result of shifting cultivation, logging, fuelwood extraction, and associated regrowth, was responsible for a net loss of 11.5 PgC, and the establishment of plantations withdrew from the atmosphere 1.5 PgC, most of it since 1980. Based on comparisons with other estimates, the uncertainty of this long-term flux is estimated to be within ±30%. Reducing this uncertainty will be difficult because of the difficulty of documenting the biomass of forests in existence >40 years ago. For the 15-y period 1981–1995, annual emissions averaged 1.07 PgC y–1, about 50% higher than reported for the 1980s in an earlier study. The uncertainty of recent emissions is probably within ± 50% but could be reduced significantly with systematic use of satellite data on changes in forest area. In tropical Asia, the emissions of carbon from land-use change in the 1980s accounted for approximately 75% of the region’s total carbon emissions. Since 1990 rates of deforestation and their associated emissions have declined, while emissions of carbon from combustion of fossil fuels have increased. The net effect has been a reduction in emissions of CO2 from this region since 1990.  相似文献   

3.
Terrestrial ecosystems play an important role in the global carbon (C)cycle. Tropical forests in Southeast Asia are constantly changing as a result of harvesting and conversion to other land cover. As a result of these changes, research on C budgets of forest ecosystems has intensified in the region over thelast few years. This paper reviews and synthesizes the available information. Natural forests in SE Asia typically contain a high C density (up to 500 Mg/ha). Logging activities are responsible for at least 50% decline in forest C density.Complete deforestation (conversion from forest to grassland or annual crops) results in C density of less than 40 Mg/ha. Conversion to tree plantations and other woody perennial crops also reduces C density to less than 50% of the originalC forest stocks. While much information has been generated recently, there are still large gaps of information on C budgets of tropical forests and its conversion to other land uses in SE Asia. There is therefore a need to intensify research in this area.  相似文献   

4.
Terrestrial ecosystems play an important role in the global carbon (C) cycle. Tropicalforests in Southeast Asia are constantly changing as a result of harvesting and conversion to otherland cover. As a result of these changes, research on C budgets of forest ecosystems has intensi-fied in the region over the last few years. This paper reviews and synthesizes the available infor-mation. Natural forests in SE Asia typically contain a high C density (up to 500 Mg/ha). Logging activities are responsible for at least 50% decline in forest C density. Complete deforestation (conversion from forest to grassland or annual crops) results in C density of less than 40 Mg/ha. Conversion to tree plantations and other woody perennial crops also reduces C density to lessthan 50% of the original C forest stocks. While much information has been generated recently, there are still large gaps of information on C budgets of tropical forests and its conversion to otherland uses in SE Asia. There is therefore a need to intensify research in this area.  相似文献   

5.
In this study, we simulated pasture to Pinus radiata land‐use change with the Generic Decomposition And Yield (G'DAY) ecosystem model to examine mechanisms responsible for the change in soil carbon (C) under pine. We parameterized the model for paired sites in New Zealand. Our simulations successfully reproduced empirical trends in ecosystem productivity and soil inorganic nitrogen (N), and modeled an increase in soil C and a small decline in soil N after 30 years under pine. We determined the mechanisms contributing to soil C change based on an established hypothesis that attributes increases in soil C storage to three main factors: increased ecosystem N inputs relative to outputs, increased C/N ratios in plant and soil, or a shift of N from plant to soil. The mechanisms we attributed to the simulated increase in soil C under pine were increased soil C inputs through tree litterfall, and an increase in the soil C/N ratio. In the first 7 years following pine establishment, a decline in soil C was simulated; this was matched by a decline in soil N. The simulated longer‐term increase in soil C with afforestation by pine contrasts with results from published field studies, which show either a decline or no change in soil C under pine. The discrepancy between measured and simulated changes in soil C was attributed to the G'DAY model overestimating the transfer of litter C into the mineral soil.  相似文献   

6.
Contrary to large areas in Amazonia of tropical moist forests with a pronounced dry season, tropical wet forests in Costa Rica do not depend on deep roots to maintain an evergreen forest canopy through the year. At our Costa Rican tropical wet forest sites, we found a large carbon stock in the subsoil of deeply weathered Oxisols, even though only 0.04–0.2% of the measured root biomass (>2 mm diameter) to 3 m depth was below 2 m. In addition, we demonstrate that 20% or more of this deep soil carbon (depending on soil type) can be mobilized after forest clearing for pasture establishment. Microbial activity between 0.3 and 3 m depth contributed about 50% to the microbial activity in these soils, confirming the importance of the subsoil in C cycling. Depending on soil type, forest clearing for pasture establishment led from no change to a slight addition of carbon in the topsoil (0–0.3 m depth). However, this effect was countered by a substantial loss of C stocks in the subsoil (1–3 m depth). Our results show that large stocks of relatively labile carbon are not limited to areas with a prolonged dry season, but can also be found in deeply weathered soils below tropical wet forests. Forest clearing in such areas may produce unexpectedly high C losses from the subsoil.  相似文献   

7.
土地利用变化对土壤有机碳贮量的影响   总被引:87,自引:10,他引:87  
通过对比分析六盘山林区典型天然次生林(杂灌林、山杨和辽东栎林)与农田、草地及农田、草地与人工林(13、18和25年生华北落叶松)邻近样地土壤有机碳含量和密度及其在土壤剖面上分布的差异,研究了天然次生林变成农田或草地及农田或草地造林后对土壤有机碳贮量的影响,结果表明,土壤有机碳含量方面,农田和草地比天然次生林分别低54%和27%,差异主要在0~50cm土层;农田和草地比人工林分别低42%和26%,差异主要在0~40cm土层,土壤有机碳密度方面,农田和草地比天然次生林分别低35%和14%,差异主要在0~50cm土层;农田比人工林低23%,草地比人工林高4%,差异主要在0~30cm土层.天然次生林和人工林土壤有机碳含量和密度随土层加深而递减的幅度比农田或草地大.这些差异主要由土地利用变化引起的土壤有机碳输入与输出及根系分布的变化所致.结果说明六盘山林区天然次生林破坏变成草地或农田后土壤有机碳含量和密度(主要是0~50cm土层)将下降,而农田中造林后土壤有机碳含量和密度(主要是0~30cm土层)又将增加,草地上造林后土壤有机碳含量增加而密度变化不大。另外,土壤有机碳含量和密度在土壤剖面上的分布也将随土地利用变化而发生改变。  相似文献   

8.
The effects of forest-to-pasture conversion on soil carbon (C) stocks depend on a combination of climatic and management factors, but factors that relate to grazing intensity are perhaps the least understood. To understand the long-term impact of grazing in converted pastures, methods are needed that accurately measure the impact of grazing on recent plant inputs to soil C in a variety of pasture management and climate settings. Here, we present an analysis from Hawai'i of changes in vegetation structure and soil organic carbon (SOC) along gradients of grazing intensity and elevation in pastures converted from dry tropical forest 100 years ago. We used hyperspectral remote sensing of photosynthetic vegetation, nonphotosynthetic vegetation (NPV) and exposed substrate to understand the effects of grazing on plant litter cover, thus, estimating recent plant inputs to soils (the NPV component). Forest-to-pasture conversion caused a shift from C3 to C4 plant physiology, thus the δ 13C method was used in soil cores to measure the fraction of SOC accumulated from pasture vegetation sources following land conversion. SOC decreased in pasture by 5–9 kg C m−2, depending upon grazing intensity. SOC derived from C3 (forest) sources was constant across the grazing gradient, indicating that the observed variation in SOC was attributable to changes in C inputs following deforestation. Soil C stocks were also reduced in pastures relative to forest soils. We found that long-term grazing lowers SOC following Hawaiian forest-to-pasture conversion, and that these changes are larger in magnitude that those occurring with elevation (climate). Further we demonstrate a relationship between remotely sensed measurements of surface litter and field SOC measurements, allowing for regional analysis of pasture condition and C storage where limited field data are available.  相似文献   

9.
Challenges to estimating carbon emissions from tropical deforestation   总被引:2,自引:0,他引:2  
An accurate estimate of carbon fluxes associated with tropical deforestation from the last two decades is needed to balance the global carbon budget. Several studies have already estimated carbon emissions from tropical deforestation, but the estimates vary greatly and are difficult to compare due to differences in data sources, assumptions, and methodologies. In this paper, we review the different estimates and datasets, and the various challenges associated with comparing them and with accurately estimating carbon emissions from deforestation. We performed a simulation study over legal Amazonia to illustrate some of these major issues. Our analysis demonstrates the importance of considering land-cover dynamics following deforestation, including the fluxes from reclearing of secondary vegetation, the decay of product and slash pools, and the fluxes from regrowing forest. It also suggests that accurate carbon-flux estimates will need to consider historical land-cover changes for at least the previous 20 years. However, this result is highly sensitive to estimates of the partitioning of cleared carbon into instantaneous burning vs. long-timescale slash pools. We also show that carbon flux estimates based on 'committed flux' calculations, as used by a few studies, are not comparable with the 'annual balance' calculation method used by other studies.  相似文献   

10.
Vegetation in tropical Asia is highly diverse due to large environmental gradients and heterogeneity of landscapes. This biodiversity is threatened by intense land use and climate change. However, despite the rich biodiversity and the dense human population, tropical Asia is often underrepresented in global biodiversity assessments. Understanding how climate change influences the remaining areas of natural vegetation is therefore highly important for conservation planning. Here, we used the adaptive Dynamic Global Vegetation Model version 2 (aDGVM2) to simulate impacts of climate change and elevated CO2 on vegetation formations in tropical Asia for an ensemble of climate change scenarios. We used climate forcing from five different climate models for representative concentration pathways RCP4.5 and RCP8.5. We found that vegetation in tropical Asia will remain a carbon sink until 2099, and that vegetation biomass increases of up to 28% by 2099 are associated with transitions from small to tall woody vegetation and from deciduous to evergreen vegetation. Patterns of phenology were less responsive to climate change and elevated CO2 than biomes and biomass, indicating that the selection of variables and methods used to detect vegetation changes is crucial. Model simulations revealed substantial variation within the ensemble, both in biomass increases and in distributions of different biome types. Our results have important implications for management policy, because they suggest that large ensembles of climate models and scenarios are required to assess a wide range of potential future trajectories of vegetation change and to develop robust management plans. Furthermore, our results highlight open ecosystems with low tree cover as most threatened by climate change, indicating potential conflicts of interest between biodiversity conservation in open ecosystems and active afforestation to enhance carbon sequestration.  相似文献   

11.
  1. Zoonotic pathogens and parasites that are transmitted from vertebrates to humans are a major public health risk with high associated global economic costs. The spread of these pathogens and risk of transmission accelerate with recent anthropogenic land-use changes (LUC) such as deforestation, urbanisation, and agricultural intensification, factors that are expected to increase in the future due to human population expansion and increasing demand for resources.
  2. We systematically review the literature on anthropogenic LUC and zoonotic diseases, highlighting the most prominent mammalian reservoirs and pathogens, and identifying avenues for future research.
  3. The majority of studies were global reviews that did not focus on specific taxa. South America and Asia were the most-studied regions, while the most-studied LUC was urbanisation. Livestock were studied more within the context of agricultural intensification, carnivores with urbanisation and helminths, bats with deforestation and viruses, and primates with habitat fragmentation and protozoa.
  4. Research into specific animal reservoirs has improved our understanding of how the spread of zoonotic diseases is affected by LUC. The behaviour of hosts can be altered when their habitats are changed, impacting the pathogens they carry and the probability of disease spreading to humans. Understanding this has enabled the identification of factors that alter the risk of emergence (such as virulence, pathogen diversity, and ease of transmission). Yet, many pathogens and impacts of LUC other than urbanisation have been understudied.
  5. Predicting how zoonotic diseases emerge and spread in response to anthropogenic LUC requires more empirical and data synthesis studies that link host ecology and responses with pathogen ecology and disease spread. The link between anthropogenic impacts on the natural environment and the recent COVID-19 pandemic highlights the urgent need to understand how anthropogenic LUC affects the risk of spillover to humans and spread of zoonotic diseases originating in mammals.
  相似文献   

12.
Dramatic changes in land use have occurred in arid and semi-arid landsof Asia during the 20th century. Grassland conversion into croplands and ecosystem degradation is widespread due to the high growth rate of human population and political reforms of pastoral systems. Rangeland degradation made many parts of this region vulnerable to environmental and political changes. The collapse of the livestock sector in some states of central Asia, expansion of livestock inChina and intensive degradation of grasslands in China are examples of the responses of pastoral systems to these changes over the past decades. Carbon dynamics in this region is highly variable in space and time. Land use/cover changes with widespread reduction of forest and grasslands increased carbon emission from the region.  相似文献   

13.
We use Landsat TM time series data for the years of 1991/1992, 1995/1996 and 1999/2000 to characterize land-cover change in northeast China. With the information on land-cover change and the density of vegetation and soil carbon, we assess the potential effect of land-cover change on vegetation and soil carbon in this region. Our results show a large decrease of 2.76(104km2 in forest area and a rapid increase of 2.32(104km2 in urban area. Land-cover changes in northeast China have resulted in a potential maximum loss of 273.2 Tg C for the period of 1991-2000, with a net loss of 95.7 Tg C in vegetation and 177.5Tg C in soil. . The conversion of forests into other land-cover types could have potentially resulted in a loss of 254.6 Tg C for the study period, accounting for 68.8% of the total potential carbon loss in the northeast China. To quantify the net effect of land-cover change on carbon storage will require accounting for vegetation regrowth and soil processes. Our results also imply that forest protectionand reforestation are of critical importance to carbon sequestration in China.  相似文献   

14.
Dramatic changes in land use have occurred in arid and semi-arid lands of Asia duringthe 20th century. Grassland conversion into croplands and ecosystem degradation is widespreaddue to the high growth rate of human population and political reforms of pastoral systems. Rangeland degradation made many parts of this region vulnerable to environmental and political changes. The collapse of the livestock sector in some states of central Asia, expansion of livestockin China and intensive degradation of grasslands in China are examples of the responses of pastoral systems to these changes over the past decades. Carbon dynamics in this region is highly variable in space and time. Land use/cover changes with widespread reduction of forest and grasslands increased carbon emission from the region.  相似文献   

15.
卿苗  赵军  冯超  黄治化  温媛媛  张伟婕 《生态学报》2022,42(23):9525-9536
陆地生态系统碳储量是表征碳储存服务的重要指标,其变化与土地利用变化存在着密不可分的关系。预测未来土地利用变化对认识区域生态系统服务及其变化具有重要的意义。利用石羊河流域1980—2020年土地利用数据,运用InVEST模型和FLUS模型,探究了石羊河流域在过去40年间和未来自然变化、生态保护、耕地保护3种情景下的土地利用变化对碳储量的影响。结果表明:石羊河流域在1980—2020年间耕地、草地、建设用地呈增加趋势,林地、水域、未利用地呈减少的趋势。40年间石羊河流域碳储量增加了7.98×106t,增幅为1.44%。石羊河流域碳储量呈现明显的空间分异,碳储量较高的地区主要分布在上游祁连山区和中下游绿洲地区,这种分布格局与流域内土地利用类型的空间分布密切相关。至2030年,自然变化、生态保护、耕地保护情景下石羊河流域碳储量分别为563×106t、563.43×106t、564.98×106t,较2020年分别增加了0.45%、0.53%和0.80%,其中生态保护情景与其他两种情景相比既保护了生态环境还保...  相似文献   

16.
Land use change and the global carbon cycle: the role of tropical soils   总被引:31,自引:4,他引:31  
Millions of hectares of tropical forest are cleared annually for agriculture, pasture, shifting cultivation and timber. One result of these changes in land use is the release of CO2 from the cleared vegetation and soils. Although there is uncertainty as to the size of this release, it appears to be a major source of atmospheric CO2, second only to the release from the combustion of fossil fuels. This study estimates the release of CO2 from tropical soils using a computer model that simulates land use change in the tropics and data on (1) the carbon content of forest soils before clearing; (2) the changes in the carbon content under the various types of land use; and (3) the area of forest converted to each use. It appears that the clearing and use of tropical soils affects their carbon content to a depth of about 40 cm. Soils of tropical closed forests contain approximately 6.7 kg C · m-2; soils of tropical open forests contain approximately 5.2 kg C · m-2 to this depth. The cultivation of tropical soils reduces their carbon content by 40% 5 yr after clearing; the use of these soils for pasture reduces it by about 20%. Logging in tropical forests appears to have little effect on soil carbon. The carbon content of soils used by shifting cultivators returns to the level found under primary forest about 35 yr after abandonment. The estimated net release of carbon from tropical soils due to land use change was 0.11–0.26 × 1015 g in 1980.  相似文献   

17.
We use Landsat TM time series data for the years of 1991/1992, 1995/1996 and1999/2000 to characterize land-cover change in northeast China. With the information onland-cover change and the density of vegetation and soil carbon, we assess the potential effect of land-cover change on vegetation and soil carbon in this region. Our results show a large decrease of 2.76×10~4km~2 in forest area and a rapid increase of 2.32×10~4km~2 in urban area. Land-cover changes in northeast China have resulted in a potential maximum loss of 273.2 Tg C for the period of 1991-2000, with a net loss of 95.7 Tg C in vegetation and 177.5Tg C in soil. The conversionof forests into other land-cover types could have potentially resulted in a loss of 254.6 Tg C for thestudy period, accounting for 68.8% of the total potential carbon loss in the northeast China. To quantify the net effect of land-cover change on carbon storage will require accounting for vegeta-tion regrowth and soil processes. Our results also imply that forest protection and reforestation are of critical importance to carbon sequestration in China.  相似文献   

18.
We estimate changes in forest cover (deforestation and forest regrowth) in the tropics for the two last decades (1990–2000 and 2000–2010) based on a sample of 4000 units of 10 ×10 km size. Forest cover is interpreted from satellite imagery at 30 × 30 m resolution. Forest cover changes are then combined with pan‐tropical biomass maps to estimate carbon losses. We show that there was a gross loss of tropical forests of 8.0 million ha yr?1 in the 1990s and 7.6 million ha yr?1 in the 2000s (0.49% annual rate), with no statistically significant difference. Humid forests account for 64% of the total forest cover in 2010 and 54% of the net forest loss during second study decade. Losses of forest cover and Other Wooded Land (OWL) cover result in estimates of carbon losses which are similar for 1990s and 2000s at 887 MtC yr?1 (range: 646–1238) and 880 MtC yr?1 (range: 602–1237) respectively, with humid regions contributing two‐thirds. The estimates of forest area changes have small statistical standard errors due to large sample size. We also reduce uncertainties of previous estimates of carbon losses and removals. Our estimates of forest area change are significantly lower as compared to national survey data. We reconcile recent low estimates of carbon emissions from tropical deforestation for early 2000s and show that carbon loss rates did not change between the two last decades. Carbon losses from deforestation represent circa 10% of Carbon emissions from fossil fuel combustion and cement production during the last decade (2000–2010). Our estimates of annual removals of carbon from forest regrowth at 115 MtC yr?1 (range: 61–168) and 97 MtC yr?1 (53–141) for the 1990s and 2000s respectively are five to fifteen times lower than earlier published estimates.  相似文献   

19.
Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem carbon storage in above‐ and belowground live biomass and detritus across a well‐constrained 5.2 °C MAT gradient in tropical montane wet forests on the Island of Hawaii. This gradient does not systematically vary in biotic or abiotic factors other than MAT (i.e. dominant vegetation, substrate type and age, soil water balance, and disturbance history), allowing us to isolate the impact of MAT on ecosystem carbon storage. Live biomass carbon did not vary predictably as a function of MAT, while detrital carbon declined by ~14 Mg of carbon ha?1 for each 1 °C rise in temperature – a trend driven entirely by coarse woody debris and litter. The largest detrital pool, soil organic carbon, was the most stable with MAT and averaged 48% of total ecosystem carbon across the MAT gradient. Total ecosystem carbon did not vary significantly with MAT, and the distribution of ecosystem carbon between live biomass and detritus remained relatively constant across the MAT gradient at ~44% and ~56%, respectively. These findings suggest that in the absence of alterations to precipitation or disturbance regimes, the size and distribution of carbon pools in tropical montane wet forests will be less sensitive to rising MAT than predicted by ecosystem models. This article also provides needed detail on how individual carbon pools and ecosystem‐level carbon storage will respond to future warming.  相似文献   

20.
Anthropogenic perturbations have profoundly modified the Earth's biogeochemical cycles, the most prominent of these changes being manifested by global carbon (C) cycling. We investigated long‐term effects of human‐induced land‐use and land‐cover changes from native tropical forest (Kenya) and subtropical grassland (South Africa) ecosystems to agriculture on the dynamics and structural composition of soil organic C (SOC) using elemental analysis and integrated 13C nuclear magnetic resonance (NMR), near‐edge X‐ray absorption fine structure (NEXAFS) and synchrotron‐based Fourier transform infrared‐attenuated total reflectance (Sr‐FTIR‐ATR) spectroscopy. Anthropogenic interventions led to the depletion of 76%, 86% and 67% of the total SOC; and 77%, 85% and 66% of the N concentrations from the surface soils of Nandi, Kakamega and the South African sites, respectively, over a period of up to 100 years. Significant proportions of the total SOC (46–73%) and N (37–73%) losses occurred during the first 4 years of conversion indicating that these forest‐ and grassland‐derived soils contain large amounts of labile soil organic matter (SOM), potentially vulnerable to degradation upon human‐induced land‐use and land‐cover changes. Anthropogenic perturbations altered not only the C sink capacity of these soils, but also the functional group composition and dynamics of SOC with time, rendering structural composition of the resultant organic matter in the agricultural soils to be considerably different from the SOM under natural forest and grassland ecosystems. These molecular level compositional changes were manifested: (i) by the continued degradation of O‐alkyl and acetal‐C structures found in carbohydrate and holocellulose biomolecules, some labile aliphatic‐C functionalities, (ii) by side‐chain oxidation of phenylpropane units of lignin and (iii) by the continued aromatization and aliphatization of the humic fractions possibly through selective accumulation of recalcitrant H and C substituted aryl‐C and aliphatic‐C components such as (poly)‐methylene units, respectively. These changes appeared as early as the fourth year after transition, and their intensity increased with duration of cultivation until a new quasi‐equilibrium of SOC was approached at about 20 years after conversion. However, subtle but persistent changes in molecular structures of the resultant SOM continued long after (up to 100 years) a steady state for SOC was approached. These molecular level changes in the inherent structural composition of SOC may exert considerable influence on biogeochemical cycling of C and bioavailability of essential nutrients present in association with SOM, and may significantly affect the sustainability of agriculture as well as potentials of the soils to sequester C in these tropical and subtropical highland agroecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号