首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin E inhibits cyclooxygenase activity in macrophages from old mice by reducing peroxynitrite production. PGE(2) is a proinflammatory mediator that has been linked to a variety of age-associated diseases such as cancer, arthritis, and cardiovascular disease. Furthermore in the aged, increased cyclooxygenase (COX)-2-mediated PGE(2) production contributes to decline in T-cell-mediated function. Previously we reported that increased macrophage PGE(2) production in the aged is due to higher COX-2 activity and that supplementation with vitamin E significantly reduced the age-associated increase in macrophage PGE(2) production posttranslationally without changing COX-2 expression. Peroxynitrite, a product of nitric oxide (NO) and superoxide (O(-)(2)), increases the activity of COX without affecting its expression. Thus, we investigated if vitamin E inhibits COX activity through decreasing peroxynitrite formation. Macrophages from old mice had higher PGE(2) levels, COX activity, and NO levels than those from young mice, all of which were significantly reduced by vitamin E. When added individually, inhibitors of NO and O(-)(2) did not significantly reduce COX activity; however, when the inhibitors were combined, COX activity was significantly reduced in macrophages from old mice fed 30 ppm vitamin E. Increasing NO levels alone using SNAP or O(-)(2) levels, using X/XO, had no effect; however, increasing peroxynitrite levels using Sin-1 or X/XO + SNAP significantly increased COX activity in macrophages from old mice fed 500, but not those fed 30 ppm vitamin E. These data strongly suggest that peroxynitrite plays an important role in the vitamin E-induced inhibition of COX activity. These findings have important implications for designing interventions to reverse and/or delay age-associated dysregulation of immune and inflammatory responses and diseases associated with them.  相似文献   

2.
3.
Aging is associated with reduced IL-2 production and T cell proliferation. Vitamin E supplementation, in aged animals and humans, increases cell division and IL-2 production by naive T cells. The immune synapse forms at the site of contact between a T cell and an APC and participates in T cell activation. We evaluated whether vitamin E affects the redistribution of signaling proteins to the immune synapse. Purified CD4(+) T cells, from the spleens of young and old mice, were treated with vitamin E before stimulation with a surrogate APC expressing anti-CD3. Using confocal fluorescent microscopy, we observed that CD4(+) T cells from old mice were significantly less likely to recruit signaling proteins to the immune synapse than cells from young mice. Vitamin E increased the percentage of old CD4(+) T cells capable of forming an effective immune synapse. Similar results were found following in vivo supplementation with vitamin E. When compared with memory cells, naive T cells from aged mice were more defective in immune synapse formation and were more responsive to vitamin E supplementation. These data show, for the first time, that vitamin E significantly improves age-related early T cell signaling events in naive CD4(+) T cells.  相似文献   

4.
5.
Aging is associated with reduced T cell function, as demonstrated by decreased T cell proliferation and IL-2 production. These changes respond to supplemental vitamin E both in animals and humans, in part by the reduction of T cell suppressive PGE(2), the production of which by macrophages is increased with age. To evaluate whether vitamin E has a direct PGE(2)-independent effect on T cell responses, T cells purified from the spleens of young and old mice were preincubated with vitamin E or vehicle control. Activation-induced cell division of T cells from old mice was lower than that by young, and the production of IL-2 following 48-h activation was less by T cells from old mice. There was an age-related decline in both the number of IL-2+ T cells and the amount of IL-2 produced per cell. Despite decreased IL-2 protein at 48 h, the expression of IL-2 mRNA at 6 h and IL-2 protein production at 6 and 16 h was greater by T cells from old mice compared with that of young. Age-related decline in cell division and IL-2 production at 48 h was only observed within the naive T cell subpopulation. Vitamin E increased both cell-dividing and IL-2-producing capacity of naive T cells from old mice, with no effect on memory T cells. These data indicate that naive T cells exhibit the greatest age-related defect and show for the first time that supplemental vitamin E has direct immunoenhancing effect on naive T cells from old mice.  相似文献   

6.
Various functions of macrophage derived from young (2-month-old) and old (14- to 17-month-old) New Zealand Black (NZB) mice with autoimmune disease were studied and compared with macrophage functions of age-matched BALB/c mice. Macrophages from young and old NZB mice demonstrated elevated levels of β-glucuronidase, cathepsin D, lysozyme, and DNase compared with those from age-matched BALB/c. DNase activity in the macrophages of NZB mice significantly increased with age. Macrophages from young and old NZB mice had greater phagocytic capacity for both 125I-labeled Shigella flexneri and Staphylococcus albus than did BALB/c macrophages. NZB macrophages from both young and old mice had higher bactericidal activity against S. albus than those from age-matched BALB/c mice. The number of macrophage/granulocyte colony-forming cells (CFC) in both bone marrow and spleen was markedly higher in young and old NZB mice than in BALB/c mice. Colony-stimulating factor (CSF) released by macrophages derived from NZB mice had higher CFC activity than that released from macrophages of age-matched BALB/c mice. In NZB mice, the CSF activity significantly increased with age. It is suggested that potentiation of macrophage number and activity compensates for the deficiency of T cell functions in NZB mice with autoimmune disease.  相似文献   

7.
8.
Increased glomerularprostaglandin E2 (PGE2) production isassociated with the progression of diseases such as membranous nephropathy, nephrotic syndrome, and anti-Thy1 nephritis. Weinvestigated the signaling pathways that regulate the synthesis andactions of PGE2 in glomerular podocytes. To study itsactions, we assessed the ability of PGE2 to regulate theproduction of its own precursor, arachidonic acid (AA), in a mousepodocyte cell line. PGE2 dose-dependently reduced phorbolester (PMA)-mediated AA release. Inhibition of PMA-stimulated AArelease by PGE2 was found to be cAMP/PKA-dependent, becausePGE2 significantly increased levels of this secondmessenger, whereas the inhibitory actions of PGE2 werereversed by PKA inhibition and reproduced by the cAMP-elevating agentsforskolin and IBMX. PGE2 synthesis in this podocyte cellline increased fourfold at 60 min in response to PMA, coinciding withupregulation of cyclooxygenase (COX)-2 but not COX-1 levels. However,PGE2 synthesis was significantly reduced by COX-1-selectiveinhibition, yet to a lesser extent by COX-2-selective inhibition. Ourfindings suggest that PMA-stimulated PGE2 synthesis inmouse podocytes requires both basal COX-1 activity and induced COX-2expression, and that PGE2 reduces PMA-stimulated AA releasein a cAMP/PKA-dependent manner. Such an autocrine regulatory loop mighthave important consequences for podocyte and glomerular function in thecontext of renal diseases involving PGE2 synthesis.

  相似文献   

9.
Inadequate vitamin D status has been linked to increased risk of type 2 diabetes and cardiovascular disease. Inducible cyclooxygenase (COX) isoform COX-2 has been involved in the pathogenesis of such chronic inflammatory diseases. We found that the active form of vitamin D, 1,25(OH)2D produces dose-dependent inhibition of COX-2 expression in murine macrophages under both basal and LPS-stimulated conditions and suppresses proinflammatory mediators induced by LPS. Administration of 1,25(OH)2D significantly alleviated local inflammation in a carrageenan-induced paw edema mouse model. Strikingly, the phosphorylation of both Akt and its downstream target IκBα in macrophages were markedly suppressed by 1,25(OH)2D in the presence and absence of LPS stimulation through up-regulation of THEM4 (thioesterase superfamily member 4), an Akt modulator protein. Knockdown of both vitamin D receptor and THEM4 attenuated the inhibitory effect of 1,25(OH)2D on COX-2 expression in macrophages. A functional vitamin D-responsive element in the THEM4 promoter was identified by chromatin immunoprecipitation and luciferase reporter assay. Our results indicate that vitamin D restrains macrophage-mediated inflammatory processes by suppressing the Akt/NF-κB/COX-2 pathway, suggesting that vitamin D supplementation might be utilized for adjunctive therapy for inflammatory disease.  相似文献   

10.
Cyclooxygenase-2 (COX-2)-mediated prostaglandin E2 (PGE2) biosynthesis by macrophages downregulates microbicidal activities in innate and acquired immune responses against intracellular bacteria. Previous studies in mice showed that intraperitoneal administration of heat-killed Mycobacterium bovis bacillus Calmette-Guérin (HK-BCG) resulted in induction of splenic PGE2-releasing macrophages in 7–14 days. In contrast, HK-BCG induced catalytically inactive COX-2 at relatively high levels in the macrophages within 1 day. In the present study, we found that COX-2 was localized subcellularly in the nuclear envelope (NE) 7 and 14 days after HK-BCG treatment, whereas COX-2 was dissociated from the NE 1 day after treatment. At 1 day after treatment, the majority of COX-2-positive macrophages had phagocytosed HK-BCG. In contrast, no intracellular HK-BCG was detected 7 and 14 days after treatment in COX-2-positive macrophages, where COX-2 was associated with the NE. However, when macrophages phagocytosed HK-BCG in vitro, all COX-2 was associated with the NE. Thus the administration of HK-BCG induces the biphasic COX-2 expression of an NE-dissociated catalytically inactive or an NE-associated catalytically active form in splenic macrophages. The catalytically inactive COX-2-positive macrophages develop microbicidal activities effectively, since they lack PGE2 biosynthesis. nuclear envelope; autoimmune disease; prostaglandin E2  相似文献   

11.
The purpose of this study was to determine if relatively short-term vitamin E supplementation could reverse age-associated impairments in cognitive or motor function and the accumulated oxidative damage in the brain of aged mice. Separate groups of 5- or 20-month-old C57BL6 mice were placed on either a control diet or the same diet supplemented with alpha-tocopheryl acetate (1.65 g/kg). After 4 weeks on the diets, mice were tested for cognitive and motor functions over the next 8 weeks, during which the supplementation was maintained. Vitamin E supplementation increased the concentration of alpha-tocopherol in the cerebral cortex of both the young and old mice, but did not significantly affect oxidative damage to proteins and lipids in the brain cortex. When compared with young controls, the old control mice showed slower learning of a swim maze, longer reaction times, diminished auditory and shock-startle responsiveness, and diminished motor performance on tests of coordinated running and bridge walking. The vitamin E-administered old mice failed to show improvement of function relative to age-matched controls on any of the tests, but did show altered retention performance on the swim maze task and impaired performance in the test of coordinated running. The latter effects were not evident in young mice on the supplemented diet. Results of this study suggest that, when implemented in relatively old mice, supplementation of vitamin E is ineffective in reversing preexisting age-related impairments of cognitive or motor function, and has little effect on common measures of protein or lipid oxidative damage in the mouse brain. Moreover, the current findings indicate that vitamin E could have detrimental effects on some brain functions when implemented in older animals.  相似文献   

12.
Macrophages play important roles in defense against infection, as well as in homeostasis maintenance. Thus alterations of macrophage function can have unexpected pathological results. Cyclooxygenase (COX) inhibitors are widely used to relieve pain, but the effects of long-term usage on macrophage function remain to be elucidated. Using bone marrow-derived macrophage culture and long-term COX inhibitor treatments in BALB/c mice and zebrafish, we showed that chronic COX inhibition drives macrophages into an inflammatory state. Macrophages differentiated in the presence of SC-560 (COX-1 inhibitor), NS-398 (COX-2 inhibitor) or indomethacin (COX-1/2 inhibitor) for 7 days produced more TNFα or IL-12p70 with enhanced p65/IκB phosphoylation. YmI and IRF4 expression was reduced significantly, indicative of a more inflammatory phenotype. We further observed that indomethacin or NS-398 delivery accelerated zebrafish death rates during LPS induced sepsis. When COX inhibitors were released over 30 days from an osmotic pump implant in mice, macrophages from peritoneal cavities and adipose tissue produced more TNFα in both the basal state and under LPS stimulation. Consequently, indomethacin-exposed mice showed accelerated systemic inflammation after LPS injection. Our findings suggest that macrophages exhibit a more inflammatory phenotype when COX activities are chronically inhibited.  相似文献   

13.
Arsenic (As) exerts oxidative stress with depletion of body selenium in monogastric animals. But in ruminants this fact is not yet verified. Vitamin E is an effective dietary antioxidant. Thus, in this experiment, the protective effect of vitamin E against arsenic toxicity induced by sodium arsenite (60 mg As/kg diet) was investigated in goat kids. For this, 21 male kids were divided into three equal groups and fed either basal diet as such (control), or supplemented with 60 mg As/kg diet and 60 mg As/kg diet + 250 IU vitamin E/kg diet for 180 days. Vitamin E supplementation alleviated the toxic effects caused by arsenic on serum alanine aminotransferase and aspartate aminotransferase and lipid peroxidation. It also prevented the depletion of reduced glutathione content and reduction in activity of catalase, superoxide dismutase and glutathione-s-transferase in erythrocytes resulted from arsenic intoxication. The elevated levels of arsenic and reduced levels of selenium in the serum and tissues in arsenic treated animals were attenuated by vitamin E supplementation, though not completely. However, serum cortisol level was not affected by arsenic. It was concluded that arsenic exerts cortisol independent stressor mechanism and supplementation of vitamin E at a level of 250 IU/kg diet was partially effective in reducing tissue accumulation of arsenic in the body and protect the kids from oxidative stress induced by arsenic.  相似文献   

14.
Increased systemic level of inflammatory cytokines leads to numerous age-related diseases. In senescent macrophages, elevated prostaglandin E2 (PGE2) production contributes to the suppression of T cell function with aging, which increases the susceptibility to infections. However, the regulation of these inflammatory cytokines and PGE2 with aging still remains unclear. We have verified that cyclooxygenase (COX)-2 expression and PGE2 production are higher in LPS-stimulated macrophages from old mice than that from young mice. Downregulation of RXRα, a nuclear receptor that can suppress NF-κB activity, mediates the elevation of COX2 expression and PGE2 production in senescent macrophages. We also have found less induction of ABCA1 and ABCG1 by RXRα agonist in senescent macrophages, which partially accounts for high risk of atherosclerosis in aged population. Systemic treatment with RXRα antagonist HX531 in young mice increases COX2, TNF-α, and IL-6 expression in splenocytes. Our study not only has outlined a mechanism of elevated NF-κB activity and PGE2 production in senescent macrophages, but also provides RXRα as a potential therapeutic target for treating the age-related diseases.  相似文献   

15.
Unlike most other mammalian cells, beta-cells of Langerhans constitutively express cyclooxygenase (COX)-2 rather than COX-1. COX-2 is also constitutively expressed in type 1 diabetes (T1D) patients' periphery blood monocytes and macrophage. To understand the role of COX-2 in the beta-cell, we investigated COX-2 expression in beta-cells and islet infiltrates of NOD and BALB/c mice using fluorescence immunohistochemistry and cytochemical confocal microscopy and Western blotting. Immunostaining showed that COX-2 is expressed in islet-infiltrating macrophages, and that the expression of insulin and COX-2 disappeared concomitantly from the beta-cells when NOD mice progressed toward overt diabetes. Also cultured INS-1E cells coexpressed insulin and COX-2 but clearly in different subcellular compartments. Treatment with celecoxib increased insulin release from these cells in a dose-dependent manner in glucose concentrations ranging from 5 to 17 mM. Excessive COX-2 expression by the islet-infiltrating macrophages may contribute to the beta-cell death during insulitis. The effects of celecoxib on INS-1E cells suggest that PGE(2) and other downstream products of COX-2 may contribute to the regulation of insulin release from the beta-cells.  相似文献   

16.
Vitamin E and selenium (Se) interact synergistically as an important antioxidant defense mechanism. Se, an essential component of glutathione peroxidase (GSH-Px) and vitamin E decompose fatty acid hydroperoxides and hydrogen peroxides generated by free radical reactions. Vitamin E and GSH-Px may modulate arachidonic acid metabolism and the activity of cyclooxygenase enzymes by affecting peroxide concentration. The balance between arterial wall prostacyclin (PGI2) production and platelet thromboxane (TX)A2 directly influences platelet activity. In order to elucidate the differential role of dietary vitamin E and Se in aortic PGI2 and platelet TXA2 synthesis, 1-mo-old F344 rats were fed semipurified diets containing different levels of vitamin E (0, 30, 200 ppm) and Se (0, 0.1, 0.2 ppm) for 2 mo. Thromboxane B2 (TXB2) and 6-keto-PGF1α, were measured by radioimmunoassay (RIA) after incubation of whole blood and aortic rings at 37°C for 10 and 30 min, respectively. Vitamin E deficiency reduced plasma vitamin E to 5–17% of control-fed rats, and supplementation increased it to 53% of the control-fed rats. Se supplementation in vitamin E-supplemented animals increased plasma GSH-Px by 17%, compared to vitamin E-deficient rats. Se and vitamin E supplementation did not have a similar effect on TXB2 and PGI2 synthesis. Se deficiency did not alter platelet TXB2 synthesis, but significantly decreased aortic PGI2 synthesis. It was necessary to supplement with both antioxidants in order to increase, PGI2 synthesis. Se and vitamin E deficient groups had a higher TXB2/PGI2 ratio (0.17±0.08) compared to Se- and vitamin E-supplemented groups (0.03±0.01). These results confirm previous reports in humans and animals and are in accordance with epidemiological data indicating an inverse relationship between plasma Se and platelet aggregation. Thus, further suggesting that vitamin E and Se may have a specific role in controlling TXA2 and PGI2 synthesis.  相似文献   

17.
Two prostaglandin (PG) H synthases encoded by Ptgs genes, colloquially known as cyclooxygenase (COX)-1 and COX-2, catalyze the formation of PG endoperoxide H2, the precursor of the major prostanoids. To address the functional interchangeability of these two isoforms and their distinct roles, we have generated COX-2>COX-1 mice whereby Ptgs2 is knocked in to the Ptgs1 locus. We then “flipped” Ptgs genes to successfully create the Reversa mouse strain, where knock-in COX-2 is expressed constitutively and knock-in COX-1 is lipopolysaccharide (LPS) inducible. In macrophages, flipping the two Ptgs genes has no obvious impact on COX protein subcellular localization. COX-1 was shown to compensate for PG synthesis at high concentrations of substrate, whereas elevated LPS-induced PG production was only observed for cells expressing endogenous COX-2. Differential tissue-specific patterns of expression of the knock-in proteins were evident. Thus, platelets from COX-2>COX-1 and Reversa mice failed to express knock-in COX-2 and, therefore, thromboxane (Tx) production in vitro and urinary Tx metabolite formation in COX-2>COX-1 and Reversa mice in vivo were substantially decreased relative to WT and COX-1>COX-2 mice. Manipulation of COXs revealed isoform-specific compensatory functions and variable degrees of interchangeability for PG biosynthesis in cells/tissues.  相似文献   

18.
The effect of vitamin E (1 g/kg body weight) supplementation on myosin-V and neuronal nitric oxide synthase (nNOS) immunoreactive myenteric neurons from the ileum of diabetic rats was investigated in the present study. Forty animals were divided into the following groups: normoglycemics (N), normoglycemics treated with vitamin E (NE), diabetics (D), and diabetics treated with vitamin E (DE). Quantitative and morphometric analyses were performed. The area of the tertiary plexus was also determined. Diabetes produced a 24% reduction in the number of myosin-V neurons in group D compared with group N, an effect that was accompanied by an increase in the tertiary plexus area (P < 0.05). Neuronal density was 27% higher in group NE than group N (P < 0.05). Nitrergic neuronal density was not altered as a consequence of either diabetes or vitamin E treatment. Myosin-V and nNOS immunoreactive neuronal cell body area increased significantly in group NE. The area of myosin-V and nNOS myenteric neurons also increased in group D. Vitamin E treatment (group DE) increased only the size of nitrergic neurons. The present results suggest that vitamin E elicited a neuroprotective and neurotrophic effect on the natural aging process, but with regard to diabetes, vitamin E supplementation exerted a neurotrophic effect only on nitrergic neurons.  相似文献   

19.
The relationship of physical activity and aging, two processes with a high production of oxygen-free radicals to the ascorbate and superoxide anion (O 2 - ) contents of peritoneal macrophages was studied in two animal species: guinea-pig (in which ascorbic acid is a vitamin) and mouse (in which ascorbic acid is not a vitamin). The effects of exhaustive exercise were examined in young and old animals. The results show that macrophages from old animals have a lower ascorbate content than those from young ones, whereas with exercise the ascorbate content increased in both old and young animals. This increase was higher in young than in old animals, and more evident in mice than in guinea-pigs. Aging also resulted in an increase in the O 2 - levels of macrophages. With exercise these levels decreased in young mice but increased in young guinea-pigs. In old animals the exhaustive exercise did not change the O 2 - levels. The results suggest in general a lack of correlation between the intracellular ascorbate and O 2 - levels in relation to both physical exercise and aging.Abbreviations PBS phosphate buffered saline - NBT nitroblue tetrazolium - PEC peritoneal exudate cells - PMN polymorphonuclear  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号