首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strains of Escherichia coli B/r containing a deletion of the regulatory gene araC are Ara-. Slow-growing revertants of these strains were isolated and designated aralc because they contain a second mutation in a controlling site, aral, that allows for a low level of constitutive expression of the araBAD operon (Englesbert et al., 1969). We mutagenized aralc delta C strains and selected mutants that grow faster in mineral L-arabinose medium. The new mutations, called araXc, map very close to the original aralc mutations and are in the controlling site region between araB and araC. The aralcXc delta C strains have a higher constitutive level of expression of the araBAD operon than the aralc delta C parents. The araXc mutations are cis acting and decrease the araBAD operon's sensitivity to catabolite repression. The araBAD operon is expressed equally well in ara delta C and ara C cya crp backgrounds. The repressor form of ara C protein is able to repress the constitutive synthesis due to the ara Xc allele.  相似文献   

2.
The araBAD operon of Escherichia coli B/r is positively and negatively regulated by the araC+ regulatory protein. Mutations in gene araC can result in a variety of different regulatory phenotypes: araC null mutants (those carrying a null allele exhibiting no repressor or activator activity) are unable to achieve operon induction; araC-constitutive (araCc) mutants are partially constitutive, inducible by D-fucose, and resistant to catabolite repression; araCh mutants are hypersensitive to catabolite repression; and araCi mutants are resistant to catabolite repression. Various mutant alleles of gene araC were cloned into a derivative of plasmid pBR322 by in vivo recombination. Various heterozygous araC allelic combinations were constructed by transformation. Analysis of isomerase (araA) specific activity levels under various growth conditions indicated the following dominance relationships with regard to sensitivity to catabolite repression: araCh greater than araC+ greater than (araCc and araCi) greater than araC. It was concluded that the araCh protein may form a repressor complex that is refractory to removal by cyclic AMP receptor protein-cyclic AMP complex. This was interpreted in terms of the known nucleoprotein interactions between ara regulatory proteins and ara regulatory DNA.  相似文献   

3.
Effect of catabolite repression on the mer operon   总被引:4,自引:2,他引:2       下载免费PDF全文
The plasmid-determined mer operon, which provides resistance to inorganic mercury compounds, was subject to a 2.5-fold decrease in expression when glucose was administered at the same time as the inducer HgCl2. This glucose-mediated transient repression of the operon was overcome by the addition of cyclic AMP. Permanent catabolite repression of the operon was observed in the 1.6- to 1.9-fold decrease in expression in mutants lacking either adenyl cyclase (cya) or the catabolite activator protein (crp). The effect of the cya mutation on mer expression could be overcome by the addition of cyclic AMP at the time of induction, In addition to these effects on the whole cells of a wild-type strains, we examined the effect of catabolite repression on the expression of the mercuric ion [Hg(II)] reductase enzyme, assayable in cell extracts, and on the Hg(II) uptake system, assayable in a mutant strain which lacked reductase activity. There was a two- to threefold effect of repression on the Hg(II) reductase enzyme assayable in vitro after induction under catabolite repressing conditions (either with glucose or in the crp and cya mutants). We did not find a similar repressing effect on the induction of the Hg(II) uptake system, which is also determined by the mer operon.  相似文献   

4.
Strains were constructed that contain mutational alterations affecting two distinct functional domains within the araC gene protein. The araCi (catabolite repression insensitivity) and araCh (catabolite repression hypersensitivity) mutations were used to alter the catabolite repression sensitivity domain, and mutation to D-fucose resistance was used to alter the inducer binding domain. araCh, D-fucose-resistant double mutants never exhibited constitutive ara operon expression, whereas all of the araCi, D-fucose-resistant double mutants did exhibit constitutivity. When L-arabinose was used as an inducer, most of the double mutants exhibited the sensitivity to catabolite repression associated with the araCi or araCh mutation. However, when D-fucose was used as an inducer, changes in sensitivity to catabolite repression were observed that were attributed to interactions between the two protein domains. The roles of catabolite activator protein and araC gene protein in the induction of the araBAD operon were discussed.  相似文献   

5.
Transcription regulation of colicin Ib synthesis   总被引:4,自引:0,他引:4  
  相似文献   

6.
大肠杆菌棉子糖操纵子α—半乳糖苷酶表达的调节控制   总被引:3,自引:0,他引:3  
苏悌之  徐铃 《微生物学报》1989,29(3):180-186
The alpha-galactosidase, coded for by the first structural gene rafA in the plasmid determined raf operon was an inducible enzyme. In contrast to lac or mel operon, raf operon has more strict structural specificity for inducers. The enzyme can be induced by melibiose and raffinose, or weakly by D-galactose, but not by structurally related sugars such as lactose, PNPG etc.. The alpha-galactosidase forming capacity as function of growth curve reached a single peak at the end of the logarithmic phase of the growth. The structure and regulation of raf operon is similar to those of lac operon. The repressormor-mediated negative control plays a major role in the regulation of raf operon, and cAMP-CAP mediated positive control is also involved in the regulation. When 0.4% glucose was added into the medium with other carbon sources, the expression of the enzyme was repressed by 2-3 fold. Transient catabolite repression has been observed neither in inducible nor constitutive alpha-galactosidase expression. Based on alpha-galactosidase assay, in mutant strains CA8306(cya) and CA8445 (cya, crp) the expression level of raf operon was only 9% and 2.5% of that in wild type strain respectively. The glucose effect or the repression in cya mutant can be abolished by 1-5 mmol cAMP. The constitutive alpha-galactosidase expression in cya and cry double mutant (CA8445) remains repressible by glucose, but irreversible by cAMP, suggesting cAMP-CAP complex is not the exclusive mediator of the catablite repression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
From an Escherichia coli K-12 strain lacking adenylate cyclase (cya) and cyclic AMP receptor protein (crp), two mutants were isolated that synthesize uridine phosphorylase constitutively. The mutations differ from one another and also from a wild type in the maximum rate of uridine phosphorylase synthesis. They have constitutive expression of the uridine phosphorylase gene (udp) in the presence of repressor protein coded by the cytR regulatory gene and decrease the sensitivity of the udp gene simultaneously with catabolite repression. Both mutations cause a high level of udp expression whether they are in a cya crp or in a cya+ crp+ background. Another mutation (udpP1) isolated previously alters the response of udp gene to the ctyR repressor and produces a higher constitutive level of uridine phosphorylase in a cytR+ than in a cytR background when bacteria are grown in glucose. The synthesis of uridine phosphorylase in this mutant is dependent on an intact cyclic AMP-cyclic AMP receptor protein complex. All mutations studied are cis-acting and extremely closely linked to the udp structural gene, and appear to affect the uridine phosphorylase promoter-operator region. The data obtained are in accordance with a suggestion that the cytR repressor protein normally asserts its function by preventing the positive action of cyclic AMP-cyclic AMP receptor protein complex.  相似文献   

8.
d-Fucose, a nonmetabolizable analogue of l-arabinose, prevents growth of Escherichia coli B/r on a mineral salts medium plus l-arabinose by inhibiting induction of the l-arabinose operon. Mutations giving rise to d-fucose resistance map in gene araC and result in constitutive expression of the l-arabinose operon. Most of these mutations also permit d-fucose to serve as a gratuitous inducer. It is concluded that d-fucose-resistant mutants produce an araC gene product with an altered inducer specificity. Addition of l-arabinose to cells induced with the gratuitous inducer, d-fucose, resulted in severe transient repression of operon expression followed by permanent catabolite repression. Transient repression but no permanent catabolite repression was obtained when cells unable to metabolize l-arabinose were employed. It is concluded that transport of l-arabinose alone is sufficient to achieve transient repression of its own operon, but that metabolism of l-arabinose must occur to achieve permanent catabolite repression of the l-arabinose operon. This general effect has been termed "self-catabolite repression."  相似文献   

9.
Two independent mutants resistant to l-arabinose inhibition only in the presence of d-glucose were isolated from an l-arabinose-sensitive strain containing the araD139 mutation. Preliminary mapping studies indicate that these mutations are closely linked to the araIOC region. Addition of d-glucose to growing cultures of these mutants results in a 95 to 98% repression of ara operon expression, as compared to a 50% repression of the parental control. Since cultures of both mutant and parental strains undergo a 50% repression of lac operon expression upon addition of glucose, the hypersensitivity to catabolite repression exhibited by these mutants is specific for the ara operon. Addition of cyclic adenosine monophosphate reverses the catabolite repression of the ara operon in both mutant and parent strains to 70 to 80% of the control. It is suggested that in these mutants the affinity of the ara operon initiator region for the cAMP-catabolite-activator protein complex may have been altered.  相似文献   

10.
11.
Abstract Several anaerobically regulated gene fusions were examined for the effects of catabolite repression. Glucose repressed the expression of most of the genes represented in our collection of anaerobically induced fusions. However, addition of cyclic AMP did not reverse the effects of glucose. Furthermore, introduction of cya and crp mutations into selected anaerobically induced fusion strains did not reduce anaerobic gene expression as expected from the known mechanism of aerobic catabolite repression. In fact, in different fusion strains, cya or crp mutations caused from 2 to 20-fold increases in gene expression. Although glucose repression occurs anaerobically its mechanism would appear to be quite different from that under aerobic conditions.  相似文献   

12.
13.
Cultures of Escherichia coli K-12 grown on glucose or gluconate under aerobic conditions exhibited catabolite repression of beta-galactosidase synthesis. Depression occurred when these cultures were subjected to anaerobic shock. These states of repression and depression were found to be associated with low and high differential rates of cyclic AMP synthesis, respectively. This observation is consistent with the view that cyclic AMP plays a central role in the catabolite repression phenomenon. We report here, however, that identical stages of repression and derepression occur in mutant strains possessing cya crp(Csm) genotypes and therefore unable to synthesize cyclic AMP. These results suggest that cyclic AMP is not the sole regulator involved in catabolite repression.  相似文献   

14.
15.
The regulation of crp gene expression by CRP-cAMP complex was studied in E. coli strain by the crp-lac operon fusion. F'141 crp+ episome decreased 5-7 fold the high level of crp-lac expression in crp strains while F'141 crp episome had no effect. The hybrid plasmid pCAP2 crp+ with the intact crp gene did not affect the crp gene expression level in crp mutants, though they had acquired the Crp+ phenotype just as they did in F'141 crp+ presence. The F'141 crp+ and pCAP2 crp+ combination in crp mutants also resulted in decrease of the crp gene expression comparable to the registered in the presence of the F'141 crp+ plasmid. Similar repression occurred only in cya+ strains but not in cya strains. The crp gene is supposed to possess negative regulation by CRP-cAMP complex with a complementary factor also necessary. The latter is evidently located in an E. coli chromosome site overlapped by F'141 episome.  相似文献   

16.
17.
18.
19.
The adenylate cyclase gene of Escherichia coli has been cloned on the plasmid vector pBR325. The hybrid plasmid pTH4 obtained has a molecular weight of 6,4 megadalton and represents pBR325 plasmid with the insertion of 2,8 megadalton in the Pst1 site. The cya mutant bacteria carrying pTH4 recover their ability to utilize mannitol, lactose and other carbohydrates as carbon sources, and lose this ability again in the case of rare spontaneous excision of the DNA insert from the Pst1 site. The phenotypical effect of pTH4 in cya mutants can be only seen in the crp+ genome. The strains carrying pTH4 are also characterized by the ability of beta-galactosidase induction under conditions of catabolite repression. Besides, the bacteria containing cya+ allele on the plasmid do not grow on glycerol, which seems to be caused by toxic concentrations of methylglyoxal formed as a result of the increased intracellular level of cyclic adenosine monophosphate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号