首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of both antimitotic drugs and nucleotide analogues on the magnesium-induced self-association of purified tubulin into 42S double rings has been examined by sedimentation velocity. In the absence of magnesium, all complexes sedimented as the 5.8S species. The binding of colchicine to tubulin led to a small but consistent (-0.1 to -0.2 kcal/mol) enhancement in the self-association of tubulin alpha-beta dimers. In the absence of nucleotide at the exchangeable site, tubulin retained a weak ability (K2 = 7.5 x 10(3) M-1) to self-associate, which was unchanged by the addition of guanosine or GMP. Analogues with altered P-O-P bonds (GMPPCP, GMPPNP) did not support ring formation at the protein concentrations examined, although GMPPCP supported microtubule assembly. When the exchangeable site was occupied by nucleotides altered on the gamma-phosphate (GTP gamma S, GTP gamma F), rings were formed; tubulin-GTP gamma F formed rings to an extent slightly greater than did tubulin-GTP, and tubulin-GTP gamma S to about the same extent as tubulin-GDP. Both of these analogues are inhibitors of microtubule assembly. These results are consistent with a model [Melki, R., Carlier, M.-F., Pantaloni, D., & Timasheff, S. N. (1989) Biochemistry 28, 9143-9152] in which an equilibrium exists between straight (microtubule-forming) and curved (ring-forming) conformations of tubulin. Furthermore, the present results indicate that the "switch" which controls the nature of the final polymeric product via free energy linkages is the occupancy of the gamma-phosphate binding locus of the exchangeable site by a properly coordinated metal-nucleotide complex.  相似文献   

2.
The exchangeable nucleotide binding site of platelet tubulin was labeled with [14C]p-fluorosulfonyl benzoylguanosine (FSBG). FSBG promoted polymerization of tubulin but depolymerization did not occur in the presence of this nucleoside analogue. GTP was able to block FSBG binding to tubulin. [14C]Iodoacetamide-treated tubulin which was first reacted with FSBG was digested with trypsin. The resultant peptides were analyzed by reverse phase high pressure liquid chromatography. One FSBG-labeled peptide could be identified both by its radioactivity and the characteristic UV absorbance spectrum associated with it. This may represent the exchangeable nucleotide site. A second peptide with a distinct nucleotide absorbance peak was found both in FSBG-treated and untreated tubulin preparations. This evidence is suggestive of the non-exchangeable nucleotide binding site.  相似文献   

3.
Binding of GTP and GDP to tubulin in the presence or absence of Mg2+ was measured following depletion of the exchangeable site--(E-site) nucleotide. The E-site nucleotide was displaced with a large molar excess of the nonhydrolyzable GTP analogue, GMPPCP, followed by the removal of the analogue. Using a micropartition assay, the equilibrium constant measured in 0.1 M 1.4-piperazinediethanesulfonic acid (Pipes), pH 6.9, 1 mM ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid, 1 mM dithiothreitol, and 1 mM MgSO4 at 4 degrees C was 9.1 x 10(6) M-1 for GTP and 4.4 x 10(6) M-1 for GDP. Removal of Mg2+ reduced the binding affinity of GTP by 160-fold while the affinity of GDP remained essentially unchanged. Similar values were obtained if 0.1 M Tris, pH 7.0, was used instead of Pipes. Binding of Mg2+ to tubulin containing GTP, GDP, or no nucleotide at the E-site was also examined by the micropartition method. Tubulin-GTP contained one high affinity Mg2+ site (K alpha = 1.2 x 10(6) M-1) in addition to the one occupied by Mg2+ as tubulin is isolated, while only weak Mg2+ binding to tubulin-GDP and to tubulin with a vacant E-site (K alpha = 10(3) M-1) was observed. It is suggested that Mg2+ binds to the beta and gamma phosphates of GTP, and only to the beta phosphate of GDP, as shown for the H. ras p21 protein.  相似文献   

4.
Beef heart mitochondrial F1 contains a total of six adenine nucleotide-binding sites including at least two different types of sites. Three "exchangeable" sites exchange rapidly during hydrolysis of MgATP, whereas three "nonexchangeable" sites do not (Cross, R. L. and Nalin, C. M. (1982) J. Biol. Chem. 257, 2874-2881). When F1 that has been stored as a suspension in (NH4)2SO4/ATP/EDTA/sucrose/Tris, pH 8.0, is pelleted, rinsed with (NH4)2SO4, dissolved, and desalted, it retains three bound adenine nucleotides. We find that two of these endogenous nucleotides are bound at nonexchangeable sites and one at an exchangeable site. The vacant nonexchangeable site is highly specific for adenine nucleotide and is rapidly filled by ADP upon addition of ADP or during ATP hydrolysis. ADP bound at this site can be removed by reprecipitating the enzyme with (NH4)2SO4. The single nucleotide retained by desalted F1 at an exchangeable site is displaced during hydrolysis of ATP, GTP, or ITP. The binding of PPi at two sites on the enzyme also promotes its dissociation. Neither procedure affects retention of nucleotide at the nonexchangeable sites. These observations, combined with the finding that PPi is much more easily removed from exchangeable sites than ADP, have led to the development of a procedure for preparing F1 with uniform and well-defined nucleotide site occupancy. This involves sequential exposure to MgATP, PPi, and high concentrations of Pi. Unbound ligand is removed between each step. The resulting enzyme, F1[3,0], has three occupied nonexchangeable sites and three vacant exchangeable sites. Evidence that nonexchangeable and exchangeable sites represent noncatalytic and catalytic sites, respectively, suggest that this form of the enzyme will prove useful in numerous applications, including transient kinetic measurements and affinity labeling of active site residues.  相似文献   

5.
Mn(II) EPR binding studies with reduced acyl-carrier protein (ACP-SH) strongly suggest the presence of two relatively high-affinity manganese-binding sites (average Kd/site approximately 80 microM) at physiological pH. Lowering the pH or titrating with sodium chloride reduces the average number of bound divalent cations and decreases the binding affinity. This is consistent with the idea that anionic ligand(s), e.g. the carboxylate of glutamic or aspartic acid, on the protein are involved in manganese ion coordination. At pH values above 8.0, binding affinity is also reduced, whereas the average number of bound metal ions increases to about five at pH 8.5. By interacting weakly with divalent cations (average Kd/site approximately 1 mM), octanoyl acyl-carrier protein (OcoACP) exhibits dramatically different metal-ion-binding properties compared to ACP-SH. Calcium and magnesium can compete in either ACP species for manganese binding. Photochemically-induced dynamic nuclear polarisation 1H-NMR experiments strongly suggest that ACP-SH and OcoACP undergo at pH-induced conformational change between pH 5.5 and pH 7.0, and that divalent cations stabilize the protein against such pH-induced structural perturbations.  相似文献   

6.
EPR titration of tubulin with an allocolchicine spin probe showed more than one binding site: one high-affinity binding site (Kd = 8 microM), consistent with the Ki found for competition with colchicine, and one or more low-affinity site(s) (Kd higher than 50 microM). No disturbance of the EPR signal of the tubulin-bound allocolchicine spin probe could be observed at room temperature in the presence of other paramagnetic probes: Mn(II) for the binding site of Mg(II), Co(II) for the Zn(II) binding site and Cr(III)GTP for the binding site of the exchangeable GTP. Labelling of tubulin with both the allocolchicine and a SH-group spin probe also showed lack of interaction. The colchicine-binding site is thus sterically isolated from the binding sites for GTP, Mg(II), Zn(II) and the two essential SH-groups. In the tubulin-colchicin complex, all SH-groups could still be labelled with an excess of the SH-reagent, N-ethylmaleimide. Furthermore, colchicine binding was only minimally influenced by the blocking of the two essential SH-groups. However, the rate constant of the reaction of two equivalents of the SH-reagent, a maleimide spin probe, with the tubulin-colchicine complex was only 50% of the rate constant found with uncomplexed tubulin. As direct steric interaction of the essential SH-groups with the colchicine-binding site can be excluded, we can now definitively decide that binding of colchicine to tubulin induces a conformational change, which affects the accessibility of the most reactive SH-groups.  相似文献   

7.
The goal of this work was to determine the binding properties and location of 4',6-diamidino-2-phenylindole (DAPI) complexed with tubulin. Using fluorescence anisotropy, a dissociation constant of 5.2+/-0.4 microM for the DAPI-tubulin complex was determined, slightly lower than that for the tubulin S complex. The influence of the C-terminal region on the binding of DAPI to tubulin was also characterized. Using FRET experiments, and assuming a kappa2 value of 2/3, distances between Co2+ bound to its high-affinity binding site and the DAPI-binding site and 2',3'-O-(trinitrophenyl)guanosine 5'-triphosphate bound to the exchangeable nucleotide and the DAPI-binding site were found to be 20+/-2 A and 43+/-2 A, respectively. To locate potential DAPI-binding sites on tubulin, a molecular modeling study was carried out using the tubulin crystal structure and energy minimization calculations. The results from the FRET measurements were used to limit the possible location of DAPI in the tubulin structure. Several candidate binding sites were found and these are discussed in the context of the various properties of bound DAPI.  相似文献   

8.
GDP inhibits paclitaxel-induced tubulin assembly without GTP when the tubulin bears GDP in the exchangeable site (E-site). Initially, we thought inhibition was mediated through the E-site, since small amounts of GTP or Mg2+, which favors GTP binding to the E-site, reduced inhibition by GDP. We thought trace GTP released from the nonexchangeable site (N-site) by tubulin denaturation was required for polymer nucleation, but microtubule length was unaffected by GDP. Further, enhancing polymer nucleation reduced inhibition by GDP. Other mechanisms involving the E-site were eliminated experimentally. Upon finding that ATP weakly inhibited paclitaxel-induced assembly, we concluded that another ligand binding site was responsible for these inhibitory effects, and we found that GDP was not binding at the taxoid, colchicine, or vinca sites. There may therefore be a lower affinity site on tubulin to which GDP can bind distinct from the E- and N-sites, possibly on α-tubulin, based on molecular modeling studies.  相似文献   

9.
Microtubules induced by the binding of GTP or of a non-hydrolysable analog of GTP onto the exchangeable site of tubulin appear very similar according to electron microscopy and polymerisation kinetics criteria. However, we show here that the exchangeable sites or “E” sites of the tubulin subunits remain available for nucleotide exchange inside the GMP-PCP-microtubules contrary to the “E” sites inside the GDP-microtubules. Moreover, under specific conditions, GMP-PCP induces the polymerisation of tubulin into a bidimensional, pseudocrystallin structure. Such a “crystallisation” is inhibited by GTP and GDP.  相似文献   

10.
Maytansine inhibits nucleotide binding at the exchangeable site of tubulin   总被引:1,自引:0,他引:1  
The antineoplastic drug maytansine inhibits the binding of exogenously added radiolabeled GDP and GTP to tubulin (50% inhibition at 9-10 microM drug at 0 degrees). Vinblastine was 1/10-th as inhibitory. Neither maytansine nor vinblastine displaced GDP from tubulin, and both drugs virtually eliminated dissociation of radiolabeled GDP from the exchangeable site. Maytansine also inhibits binding of nucleotides to a vacant exchangeable site. Maytansine thus prevents nucleotide exit and entry at the exchangeable site because of a direct physical obstruction or a conformational change in the tubulin molecule.  相似文献   

11.
A rapid and sensitive assay for [3H]GTP binding activity of tubulin has been developed. This assay method is based on the quantitative retention of [3H]GTP. Tubulin complex on a nitrocellulose membrane filter. It was also found that bovine brain tubulin is markedly stablized by glycerol and GTP against denaturation. A large-scale purification of bovine brain tubulin was achieved using the new assay procedure and by the inclusion of glycerol and GTP in a buffer solution used for column chromatograph. The purified tubulin could be stored at -80degrees in the presence of glycerol and GTP for at least a year without any apprecialbe loss of [3H]GTP- and [3H]colchicine binding activities. The interaction of tubulin with guanine nucleotides was also studied using the nitorcellulose membrane filter procedure. It was found that the binding of [3H]GTP to tubulin with an empty exchangeable site proceeded promptly within k sec while the exchange of [3H]GTP- with a GTP-tubulin complex in which the exchangeable site had been occupied with unlabeled GTP occured more slowly. The dissociation constants for GTP and GDP at the exchangeable site of tubulin were determined as 0.5 times 10-6M and 1.9 times 10-6M, respectively. 5'-Guanylylimidodiphosphate could interact, although less strongly, with tubulin at this site, whereas the interaction of other nucleoside triphosphates includint ATP, CTP, UTP, and 5'-guanylyl methylenediphosphonate was very weak, if it occured at all. The presence of Mg2+ and a free sulfhydryl group was found to be essential for binding of [3H]GTP to tubulin. Ca2+ was found to replace Mg2+ in this binding reaction.  相似文献   

12.
Dolastatin 10, a potent antimitotic peptide from a marine animal, strongly inhibits microtubule assembly, tubulin-dependent GTP hydrolysis, and the binding of vinca alkaloids to tubulin. In studies of the binding of [3H]vincristine to the protein, with vinblastine as a control for competitive inhibition (Ki, 6.6 microM), we found that the macrolide antimitotic agents maytansine and rhizoxin were also competitive inhibitors (Ki values, 3.1 and 12 microM). Dolastatin 10 and an unrelated peptide antimitotic, phomopsin A, were more potent but noncompetitive inhibitors (Ki values, 1.4 and 2.8 microM). Since maytansine and, to a much lesser extent, vinblastine interfere with nucleotide exchange on tubulin, all drugs were examined for effects on nucleotide interactions at the exchangeable GTP site. Rhizoxin had effects intermediate between those of vinblastine and maytansine. Both peptides inhibited binding of radiolabeled GTP to tubulin even more strongly than did maytansine, but no drug displaced nucleotide from tubulin. The drugs were evaluated for stabilizing effects on the colchicine binding activity of tubulin. The peptides prevented loss of this activity, and vinblastine provided partial protection, while rhizoxin and maytansine did not stabilize tubulin. A tripeptide segment of dolastatin 10 also effectively inhibits tubulin polymerization and GTP hydrolysis. The tripeptide did not significantly inhibit either vincristine binding or nucleotide exchange, nor did it stabilize colchicine binding. These findings are rationalized in terms of a model with two distinct drug binding sites in close physical proximity to each other and to the exchangeable GTP site on beta-tubulin.  相似文献   

13.
A fluorescent derivative of paclitaxel, 3'-N-m-aminobenzamido-3'-N-debenzamidopaclitaxel (N-AB-PT), has been prepared in order to probe paclitaxel-microtubule interactions. Fluorescence spectroscopy was used to quantitatively assess the association of N-AB-PT with microtubules. N-AB-PT was found equipotent with paclitaxel in promoting microtubule polymerization. Paclitaxel and N-AB-PT underwent rapid exchange with each other on microtubules assembled from GTP-, GDP-, and GMPCPP-tubulin. The equilibrium binding parameters for N-AB-PT to microtubules assembled from GTP-tubulin were derived through fluorescence titration. N-AB-PT bound to two types of sites on microtubules (K(d1) = 61 +/- 7.0 nM and K(d2) = 3.3 +/- 0.54 microM). The stoichiometry of each site was less than one ligand per tubulin dimer in the microtubule (n(1) = 0.81 +/- 0.03 and n(2) = 0.44 +/- 0.02). The binding experiments were repeated after exchanging the GTP for GDP or for GMPCPP. It was found that N-AB-PT bound to a single site on microtubules assembled from GDP-tubulin with a dissociation constant of 2.5 +/- 0.29 microM, and that N-AB-PT bound to a single site on microtubules assembled from GMPCPP-tubulin with a dissociation constant of 15 +/- 4.0 nM. It therefore appears that microtubules contain two types of binding sites for paclitaxel and that the binding site affinity for paclitaxel depends on the nucleotide content of tubulin. It has been established that paclitaxel binding does not inhibit GTP hydrolysis and microtubules assembled from GTP-tubulin in the presence of paclitaxel contain almost exclusively GDP at the E-site. We propose that although all the subunits of the microtubule at steady state are the same "GDP-tubulin-paclitaxel", they are formed through two paths: paclitaxel binding to a tubulin subunit before its E-site GTP hydrolysis is of high affinity, and paclitaxel binding to a tubulin subunit containing hydrolyzed GDP at its E-site is of low affinity.  相似文献   

14.
Mg2+ dependence of guanine nucleotide binding to tubulin   总被引:1,自引:0,他引:1  
The relationship between the concentration of Mg2+ and the binding of GDP and GTP to tubulin dimers was investigated by measuring the displacement of the nucleotide bound at the exchangeable site (E-site) by radiolabeled GDP and GTP. A wide range of concentrations of GTP, GDP, and Mg2+ was explored. In the near absence of Mg2+, the affinity of tubulin for GDP was found to be much greater than its affinity for GTP. In the presence of 1.0 mM Mg2+, however, its affinity for GDP was slightly less than for GTP. The results could be quantitatively described in terms of a small number of reversible equilibria. Equilibrium constants, pertaining to measurements at 0 degrees C, in 0.1 M piperazine-N,N'-bis(2-ethanesulfonic acid), 0.2 mM dithioerythritol, 2 mM EGTA, pH 6.9, were obtained by nonlinear least squares fitting of the data. When the association constant of tubulin for GDP uncomplexed with Mg2+ was taken to be 1.6 X 10(7) M-1, that for uncomplexed GTP was found to be no larger than 1.4 x 10(4) M-1, at least 1100-fold smaller. The association constant of tubulin for the GDP.Mg2+ complex was found to be 2.5-2.7 x 10(7) M-1, while that for the GTP.Mg2+ complex is 6.4-9.0 x 10(7) M-1.  相似文献   

15.
Metal interactions with beef heart mitochondrial ATPase   总被引:1,自引:0,他引:1  
Atomic absorption and electron paramagnetic resonance spectroscopy were used to study the metal binding sites of beef heart mitochondrial ATPase (F1). Quantitative and qualitative properties of these sites are described. Two different separation techniques were able to distinguish two very tight sites from one tight (easily exchangeable) metal binding site on F1. Of these sites, two are specific for magnesium while one can be substituted with Mn2+, Co2+, or Zn2+. When MgAMP-PNP was incubated with F1, a fourth metal was bound to the enzyme. The carboxyl group modified by dicyclohexylcarbodiimide is shown not to be involved in binding of any of the tightly bound metals. Qualitative properties of the metal binding sites using the Mn2+-enzyme complex as a probe were ascertained using EPR at pH 6.8 and 8.0. CrATP and Mn2+ appear to bind to different metal sites on F1. The possible role of the metals in regulation of catalysis, and their relation to nucleotide binding is discussed.  相似文献   

16.
Effect of guanine nucleotides on the hydrophobic interaction of tubulin   总被引:1,自引:0,他引:1  
The influence of guanine nucleotides on the binding of tubulin to hydrophobic components is investigated. Tubulin binds to a hydrophobic phenyl-Sepharose gel in a reversible, nucleotide-dependent way. Assembly-competent tubulin is released with ion-free water as eluent. It contains one guanosine triphosphate per dimer. More denatured tubulin needs a mixture of ethanol-water to elute. Consequently, hydrophobic interaction chromatography over phenyl-Sepharose represents an easy method for preparing polymerizable tubulin free of nucleotides at the exchangeable sites. While, in the absence of guanine nucleotide, the binding of tubulin to phenyl-Sepharose is rapid and immediately reversible on nucleotide addition, the binding of the nucleotide-dependent hydrophobic sites of tubulin to 1,8-ANS is slow, and its dissociation on nucleotide addition is poor. No differences are observed between the shielding of hydrophobic sites in the presence of GTP or GDP. Neither inorganic phosphate nor A1F4- is found to directly influence guanine nucleotides in their ability to shield hydrophobic sites.  相似文献   

17.
With microtubule-associated proteins (MAPs) BeSO4 and MgSO4 stimulated tubulin polymerization as compared to a reaction mixture without exogenously added metal ion, while beryllium fluoride had no effect (E. Hamel et al., 1991, Arch. Biochem. Biophys. 286, 57-69). Effects of both cations were most dramatic at GTP concentrations in the same molar range as the tubulin concentration. We have now compared effects of beryllium and magnesium on tubulin-nucleotide interactions in both unpolymerized tubulin and in polymer. Polymer formed with magnesium had properties similar to those of polymer formed without exogenous cation, except for a 20% lower stoichiometry of exogenous GTP incorporated into the latter. In both polymers the incorporated GTP was hydrolyzed to GDP. Stoichiometry of GTP incorporation into polymers formed with beryllium or magnesium was identical, but much of the GTP in the beryllium polymer was not hydrolyzed. The beryllium polymer was more stable than the magnesium polymer. Beryllium also differed from magnesium in only weakly enhancing the binding of GTP in the exchangeable site of unpolymerized tubulin, while neither cation affected GDP exchange at the site. If both cations were present in a reaction mixture, polymer stability was little changed from that of the beryllium polymer, but most of the GTP incorporated into polymer was hydrolyzed. Six additional metal salts (AlCl3, CdCl2, CoCl2, MnCl2, SnCl2, and ZnCl2) also stimulated MAP-dependent tubulin polymerization, but enhanced polymer stability did not correlate with polymer GTP content. We postulate that enhanced polymer stability is a consequence of cation binding directly to tubulin and/or polymer while deficient GTP hydrolysis in the presence of beryllium, as well as aluminum and tin, is a consequence of tight binding of cation to GTP in the exchangeable site.  相似文献   

18.
Tubulin exchanges divalent cations at both guanine nucleotide-binding sites   总被引:2,自引:0,他引:2  
The tubulin heterodimer binds a molecule of GTP at the nonexchangeable nucleotide-binding site (N-site) and either GDP or GTP at the exchangeable nucleotide-binding site (E-site). Mg2+ is known to be tightly linked to the binding of GTP at the E-site (Correia, J. J., Baty, L. T., and Williams, R. C., Jr. (1987) J. Biol. Chem. 262, 17278-17284). Measurements of the exchange of Mn2+ for bound Mg2+ (as monitored by atomic absorption and EPR) demonstrate that tubulin which has GDP at the E-site possesses one high affinity metal-binding site and that tubulin which has GTP at the E-site possesses two such sites. The apparent association constants are 0.7-1.1 x 10(6) M-1 for Mg2+ and approximately 4.1-4.9 x 10(7) M-1 for Mn2+. Divalent cations do bind to GDP at the E-site, but with much lower affinity (2.0-2.3 x 10(3) M-1 for Mg2+ and 3.9-6.6 x 10(3) M-1 for Mn2+). These data suggest that divalent cations are involved in GTP binding to both the N- and E-sites of tubulin. The N-site metal exchanges slowly (kapp = 0.020 min-1), suggesting a mechanism involving protein "breathing" or heterodimer dissociation. The N-site metal exchange rate is independent of the concentration of protein and metal, an observation consistent with the possibility that a dynamic breathing process is the rate-limiting step. The exchange of Mn2+ for Mg2+ has no effect on the secondary structure of tubulin at 4 degrees C or on the ability of tubulin to form microtubules. These results have important consequences for the interpretation of distance measurements within the tubulin dimer using paramagnetic ions. They are also relevant to the detailed mechanism of divalent cation release from microtubules after GTP hydrolysis.  相似文献   

19.
The new fluorophor for tubulin, DAPI, is shown to bind to a site different from the exchangeable nucleotide binding site (E site) and to inhibit GTP hydrolysis by the tubulin-colchicine complex within an uncompetitive scheme. Moreover the dissociation rate constant of tubulin for microtubule ends at 32 degrees C was found largely decreased in the presence of saturating amounts of the probe while the association rate constant was little affected. These data on the kinetic parameters of tubulin interactions in the presence of DAPI, together with the inhibition of GTP hydrolysis by microtubules at the steady state are understood as the main cause for microtubule stabilization at steady-state by DAPI.  相似文献   

20.
By using gel filtration chromatography, following the technique of Hummel and Dreyer (Hummel, J., and Dreyer, W. (1962) Biochim. Biophys. Acta 63, 532-534), the adenine nucleotide-binding sites of isolated soluble chloroplast ATPase (CF1) and of the beta subunit were studied. CF1 possesses six adenine nucleotide-binding sites: two high affinity sites for ADP or ATP (KdH = 1-5 microM) in addition to one site where endogenous not-exchangeable ADP is bound, and three low affinity sites binding ADP or ATP with a dissociation constant (KdL = 15-20 microM) which is considerably increased in the presence of pyrophosphate. KdH is not modified by addition of pyrophosphate. The stability of nucleotide binding at the low affinity sites increases after heat activation of CF1. Removal of the delta or epsilon subunits on CF1 affects neither the number nor the binding parameters of the nucleotide-binding sites. The purified beta subunit possesses one easily exchangeable site/subunit. It is proposed that the low affinity sites on CF1 are the catalytic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号