首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycogen synthase kinase-3beta (GSK3beta) plays important roles in metabolism, embryonic development, and tumorigenesis. Here we investigated the role of GSK3beta signaling in vascular biology by examining its function in endothelial cells (ECs). In EC, the regulatory phosphorylation of GSK3beta was found to be under the control of phosphoinositide 3-kinase-, MAPK-, and protein kinase A-dependent signaling pathways. The transduction of a nonphosphorylatable constitutively active mutant of GSKbeta promoted apoptosis under the conditions of prolonged serum deprivation or the disruption of cell-matrix attachments. Conversely, the transduction of catalytically inactive GSK3beta promoted EC survival under the conditions of cellular stress. Under normal cell culture conditions, the activation of GSK3beta signaling inhibited the migration of EC to vascular endothelial growth factor or basic fibroblast growth factor. Angiogenesis was inhibited by GSK3beta activation in an in vivo Matrigel plug assay, whereas the inhibition of GSK3beta signaling enhanced capillary formation. These data suggest that GSK3beta functions at the nodal point of converging signaling pathways in EC to regulate vessel growth through its control of vascular cell migration and survival.  相似文献   

2.
The survival of renal medullary interstitial cells (RMICs) requires their adaptation to rapid shifts in ambient tonicity normally occurring in the renal medulla. Previous studies determined that cyclooxygenase-2 (COX 2) activation is critical for this adaptation. The present studies find that these adaptive mechanisms are dampened by the simultaneous activation of an apoptotic pathway linked to a glycogen synthase kinase 3beta (GSK 3beta). Inhibition of GSK 3 by LiCl or specific small molecule GSK inhibitors increased RMIC survival following hypertonic stress, and transduction of RMICs with a constitutively active GSK 3beta (AdGSK 3betaA9) significantly increased apoptosis, consistent with a proapoptotic role of GSK 3beta. Following GSK 3beta inhibition, increased survival was accompanied by increased COX 2 expression and COX 2 reporter activity. In contrast, GSK 3beta overexpression reduced COX 2 reporter activity. Importantly, enhanced RMIC survival produced by GSK 3beta inhibition was completely dependent on COX 2 because it was abolished by a COX 2-specific inhibitor, SC58236. The signaling pathway by which GSK 3beta suppresses COX 2 expression was then explored. GSK 3beta inhibition increased both NFkappaB and beta-catenin activity associated with decreased IkappaB and increased beta-catenin levels. The increase in COX 2 following GSK 3beta inhibition was entirely blocked by NFkappaB inhibition using mutant IkappaB adenovirus. However, adenoviral overexpression of beta-catenin did not increase COX 2 levels. These findings suggest that GSK 3beta negatively regulates COX 2 expression and that GSK 3beta inhibitors protect RMICs from hypertonic stress via induction of NFkappaB-COX 2-dependent pathway.  相似文献   

3.
Summary The methods of therapeutic angiogenesis include endothelial progenitor cell (EPC) mobilization with cytokines [e.g., granulocyte colony-stimulating factor (G-CSF)] and bone marrow mononuclear cell (BMMNC) transplantation. Combined angiogenic therapies may be superior to a single angiogenic therapy for the treatment of limb ischemia. Therefore, we investigated whether the angiogenic efficacy of a combination of two angiogenic strategies is superior to either strategy alone. One day after the surgical induction of hindlimb ischemia, mice were randomized to receive either no treatment, EPC mobilization with G-CSF administration, BMMNC transplantation using a fibrin matrix, or a combination of EPC mobilization with BMMNC transplantation using a fibrin matrix. EPC mobilization with G-CSF or BMMNC transplantation using a fibrin matrix significantly increased the microvessel density compared with no treatment. Importantly, a combination of EPC mobilization with BMMNC transplantation using a fibrin matrix further increased the densities of microvessels and BrdU-positive capillaries compared to either strategy alone. Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) expression was higher in the EPC mobilization with G-CSF or BMMNC transplantation group than in the no treatment group. The combination therapy of EPC mobilization with G-CSF and BMMNC transplantation resulted in more extensive expression of bFGF and VEGF than the single therapy of either EPC mobilization with G-CSF treatment or BMMNC transplantation. This study demonstrates that the combination therapy of BMMNC transplantation and EPC mobilization potentiates the angiogenic efficacy of either single therapy in mouse limb ischemia models.  相似文献   

4.
The biologically active factors known as adipocytokines are secreted primarily by adipose tissues and can act as modulators of angiogenesis. Visfatin, an adipocytokine that has recently been reported to have angiogenic properties, is upregulated in diabetes, cancer, and inflammatory diseases. Because maintenance of an angiogenic balance is critically important in the management of these diseases, understanding the molecular mechanism by which visfatin promotes angiogenesis is very important. In this report, we describe our findings demonstrating that visfatin stimulates the mammalian target of the rapamycin (mTOR) pathway, which plays important roles in angiogenesis. Visfatin induced the expression of hypoxia-inducible factor 1α (HIF1α) and vascular endothelial growth factor (VEGF) in human endothelial cells. Inhibition of the mTOR pathway by rapamycin eliminated the angiogenic and proliferative effects of visfatin. The visfatin-induced increase in VEGF expression was also eliminated by RNA interference-mediated knockdown of the 70-kDa ribosomal protein S6 kinase (p70S6K), a downstream target of mTOR. Visfatin inactivated glycogen synthase kinase 3β (GSK3β) by phosphorylating it at Ser-9, leading to the nuclear translocation of β-catenin. Both rapamycin co-treatment and p70S6K knockdown inhibited visfatin-induced GSK3β phosphorylation at Ser-9 and nuclear translocation of β-catenin. Taken together, these results indicate that mTOR signaling is involved in visfatin-induced angiogenesis, and that this signaling leads to visfatin-induced VEGF expression and nuclear translocation of β-catenin.  相似文献   

5.
6.
C-reactive protein (CRP), a predictor of future cardiovascular diseases, has been reported to damage the vascular wall by inducing endothelial dysfunction and inflammation. This proatherogenic CRP was speculated to have a role in attenuating angiogenic functions of human endothelial progenitor cells (EPCs), possibly impairing vascular regeneration and increasing cardiovascular vulnerability to ischemic injury. Herein, we investigated the direct effect of CRP on angiogenic activity and gene expression in human EPCs. Incubation of EPCs with human recombinant CRP significantly inhibited EPC migration in response to vascular endothelial growth factor, possibly by decreasing the expression of endothelial nitric oxide synthase and subsequent nitric oxide production. In addition, CRP-treated EPCs showed the reduced adhesiveness onto an endothelial cell monolayer. When assayed for the gene expression of arteriogenic chemo-cytokines, CRP substantially decreased their expression levels in EPC, in part due to the upregulation of suppressors of cytokine signaling proteins. These results suggest that CRP directly attenuates the angiogenic and possibly arteriogenic functions of EPCs. This CRP-induced EPC dysfunction may impair the vascular regenerative capacity of EPCs, thereby leading to increased risk of cardiovascular diseases.  相似文献   

7.

Background

Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved.

Methods

Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM.

Results

Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM.

Conclusion

The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects.  相似文献   

8.
9.
10.
To identify the intracellular signaling pathways that mediate the pro-survival activity of NMDA receptors (NMDARs), we studied effects of exogenous NMDA on cultured rat cortical and hippocampal neurons that were treated with a phosphatidylinositol-3-kinase (PI3K) inhibitor, LY294002. NMDA at 5 or 10 microm protected against LY294002-induced apoptosis, suggesting NMDAR-mediated activation of a survival signaling pathway that is PI3K-independent. NR2B-specific NMDAR blockers antagonized anti-apoptotic effects of NMDA, indicating a critical role of NR2B NMDARs in the neuroprotection. NMDA at 10 microm suppressed LY294002-induced activation of a pro-apoptotic kinase, glycogen synthase kinase 3beta (GSK3beta). GSK3beta activation by LY294002 was associated with decreased levels of inhibitory GSK3beta phosphorylation at the Ser9 residue. However, NMDA did not prevent the LY294002-mediated decline of phospho-Ser9 levels. In addition, NMDA inhibited cortical neuron apoptosis induced by the overexpression of either wild type (wt) or Ser9Ala mutant form of GSK3beta, suggesting that NMDA suppressed GSK3beta in a Ser9-independent manner. Finally, inhibition of NR2B NMDARs reduced the NMDA protection against overexpression of GSK3betawt. These data indicate that moderate stimulation of NR2B NMDAR protects against inhibition of PI3K by a Ser9-independent inhibition of the pro-apoptotic activity of GSK3beta. Hence, the activation of NR2B and the Ser9-independent inhibition of GSK3beta are two newly identified elements of the signaling network that mediates the pro-survival effects of NMDA.  相似文献   

11.
Inhibition of glycogen synthase kinase-3beta (GSK3beta) is one of the mechanisms by which phosphatidylinositol 3-kinase (PI3K) activation protects neurons from apoptosis. Here, we report that inhibition of ERK1/2 increased the basal activity of GSK3beta in cortical neurons and that both ERK1/2 and PI3K were required for brain-derived neurotrophic factor (BDNF) suppression of GSK3beta activity. Moreover, cortical neuron apoptosis induced by expression of recombinant GSK3beta was inhibited by coexpression of constitutively active MKK1 or PI3K. Activation of both endogenous ERK1/2 and PI3K signaling pathways was required for BDNF to block apoptosis induced by expression of recombinant GSK3beta. Furthermore, cortical neuron apoptosis induced by LY294002-mediated activation of endogenous GSK3beta was blocked by expression of constitutively active MKK1 or by BDNF via stimulation of the endogenous ERK1/2 pathway. Although both PI3K and ERK1/2 inhibited GSK3beta activity, neither had an effect on GSK3beta phosphorylation at Tyr-216. Interestingly, PI3K (but not ERK1/2) induced the inhibitory phosphorylation of GSK3beta at Ser-9. Significantly, coexpression of constitutively active MKK1 (but not PI3K) still suppressed neuronal apoptosis induced by expression of the GSK3beta(S9A) mutant. These data suggest that activation of the ERK1/2 signaling pathway protects neurons from GSK3beta-induced apoptosis and that inhibition of GSK3beta may be a common target by which ERK1/2 and PI3K protect neurons from apoptosis. Furthermore, ERK1/2 inhibits GSK3beta activity via a novel mechanism that is independent of Ser-9 phosphorylation and likely does not involve Tyr-216 phosphorylation.  相似文献   

12.
Angiogenesis, the process by which new blood vessels arise from preexisting ones, is critical for embryonic development and is an integral part of many disease processes. Recent studies have provided detailed information on how angiogenic sprouts initiate, elongate, and branch, but less is known about how these processes cease. Here, we show that S1PR1, a receptor for the blood-borne bioactive lipid sphingosine-1-phosphate (S1P), is critical for inhibition of angiogenesis and acquisition of vascular stability. Loss of S1PR1 leads to increased endothelial cell sprouting and the formation of ectopic vessel branches. Conversely, S1PR1 signaling inhibits angiogenic sprouting and enhances cell-to-cell adhesion. This correlates with inhibition of?vascular endothelial growth factor-A (VEGF-A)-induced signaling and stabilization of vascular endothelial (VE)-cadherin localization at endothelial junctions. Our data suggest that S1PR1 signaling acts as a vascular-intrinsic stabilization mechanism, protecting developing blood vessels against aberrant angiogenic responses.  相似文献   

13.
14.
15.
16.
17.
18.
Inhibition of alphavbeta3 or alphavbeta5 integrin function has been reported to suppress neovascularization and tumor growth, suggesting that these integrins are critical modulators of angiogenesis. Here we report that mice lacking beta3 integrins or both beta3 and beta5 integrins not only support tumorigenesis, but have enhanced tumor growth as well. Moreover, the tumors in these integrin-deficient mice display enhanced angiogenesis, strongly suggesting that neither beta3 nor beta5 integrins are essential for neovascularization. We also observed that angiogenic responses to hypoxia and vascular endothelial growth factor (VEGF) are augmented significantly in the absence of beta3 integrins. We found no evidence that the expression or functions of other integrins were altered as a consequence of the beta3 deficiency, but we did observe elevated levels of VEGF receptor-2 (also called Flk-1) in beta3-null endothelial cells. These data indicate that alphavbeta3 and alphavbeta5 integrins are not essential for vascular development or pathological angiogenesis and highlight the need for further evaluation of the mechanisms of action of alphav-integrin antagonists in anti-angiogenic therapeutics.  相似文献   

19.

Background

Previous studies have demonstrated that endothelial progenitor cells (EPCs), in particular late EPCs, play important roles in endothelial maintenance and repair. Recent evidence has revealed shear stress as a key regulator for EPC differentiation. However, the underlying mechanisms regulating the shear stress–induced EPC differentiation have not been understood completely. The present study was undertaken to further investigate the effects of shear stress on the late EPC differentiation, and to elucidate the signal mechanism involved.

Methodology/Principal Finding

In vitro and in vivo assays revealed that cytoskeletal remodeling was involved in the shear stress-upregulated expression of endothelial markers vWF and CD31 in late EPCs, with subsequently increased in vivo reendothelialization after arterial injury. Moreover, shear stress activated several mechanosensitive molecules including integrin β1, Ras, ERK1/2, paxillin and FAK, which were all involved in both cytoskeletal rearrangement and cell differentiation in response to shear stress in late EPCs.

Conclusions/Significance

Shear stress is a key regulator for late EPC differentiation into endothelial cells, which is important for vascular repair, and the cytoskeletal rearrangement mediated by the activation of the cascade of integrin β1, Ras, ERK1/2, paxillin and FAK is crucial in this process.  相似文献   

20.

Background

Oxidized low density lipoprotein (oxLDL) has been shown to induce apoptosis and senescence of endothelial progenitor cells (EPC). In the present study, we hypothesized that even sub-apoptotic concentrations of oxLDL impair the angiogenic potential of EPC and investigated if this effect is mediated by affecting adhesion and incorporation.

Methods

A co-culture system of human microvascular endothelial cells and EPC was used to study the effect of sub-apoptotic concentrations of native (nLDL) and oxLDL on cell-cell interaction. The expression and the functional role of angiogenic adhesion molecules and integrins was monitored by FACS and neutralizing assay, respectively.

Results

We observed an inhibition of tube formation and impairment of EPC integration into the vascular network of mature endothelial cells by oxLDL. In contrast, nLDL did not affect angiogenic properties of EPC. Incubation of EPC with sub-apoptotic oxLDL concentrations significantly decreased E-selectin and integrin αvβ5 expression (37.6% positive events vs. 71.5% and 24.3% vs. 49.9% compared to control culture media without oxLDL). Interestingly, expression of αvβ3, VE-cadherin and CD31 remained unchanged. Blocking of E-selectin and integrin αvβ5 by neutralizing antibody effectively inhibited adhesion of EPC to differentiated endothelial cells (56.5% and 41.9% of control; p < 0.001).

Conclusion

In conclusion, oxidative alteration of LDL impairs angiogenic properties of EPC at sub-apoptotic levels by downregulation of E-selectin and integrin αvβ5, both substantial mediators of EPC-endothelial cell interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号