首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Trophic strategies and spatial use habits were investigated in reef fish communities. The results supported the hypothesis of differential use of food resources among tropical and higher latitude reef fishes, i.e . the number of species and relative abundance of fishes relying on relatively low‐quality food significantly decreased from tropical to temperate latitudes. The species : genus ratio of low‐quality food consumers increased toward the tropics, and was higher than the overall ratio considering all fishes in the assemblages. This supports the view that higher speciation rates occurred among this guild of fishes in warm waters. It was also demonstrated that density of herbivorous fishes (the dominant group relying on low‐quality food resources) in the western Atlantic decreased from tropical to temperate latitudes. Spatial use and mobility varied with latitude and consequently reef type and complexity. Fishes with small‐size home ranges predominated on tropical coral reefs.  相似文献   

3.
High species richness and evenness in structurally complex habitats has been hypothesized to be associated with niche partitioning. To test this idea, relationships between habitat structural complexity in river littoral-zone habitats and morphological diversity of tropical fishes were examined in the Cinaruco River, Venezuela. Six habitat attributes were quantified in 45 sites spanning a range of structural complexity. Fishes were collected during day and night to estimate species density and relative abundances at each site. Twenty-two morphological variables were measured for each species. Principal components analysis (PCA) of physical habitat data yielded two axes that modeled >80% of variation across sites. The first two axes from PCA of fish morphological variables modeled >70% of variation. Species density during both day and night was negatively associated with flow velocity and positively associated with habitat complexity. Similarity of day and night samples from the same site was significantly greater for sites with high habitat complexity and low flow. In general, mean local assemblage morphological PC scores were not significantly associated with habitat PC scores. Average, maximum, and standard deviation of morphological Euclidean distances of local assemblages revealed positive associations with structural complexity and negative associations with flow. These relationships held even when the positive relationship of species density was statistically removed from assemblage morphological patterns. Findings suggest that both species niche compression and assemblage niche space increase when habitat complexity is greater and flow velocity is lower in this tropical lowland river.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
Stream fishes are restricted to specific environments with appropriate habitats for feeding and reproduction. Interactions between streams and surrounding landscapes influence the availability and type of fish habitat, nutrient concentrations, suspended solids, and substrate composition. Valley width and gradient are geomorphological variables that influence the frequency and intensity that a stream interacts with the surrounding landscape. For example, in constrained valleys, canyon walls are steeply sloped and valleys are narrow, limiting the movement of water into riparian zones. Wide valleys have long, flat floodplains that are inundated with high discharge. We tested for differences in fish assemblages with geomorphology variation among stream sites. We selected rivers in similar forested and endorheic ecoregion types of the United States and Mongolia. Sites where we collected were defined as geomorphologically unique river segments (i.e., functional process zones; FPZs) using an automated ArcGIS‐based tool. This tool extracts geomorphic variables at the valley and catchment scales and uses them to cluster stream segments based on their similarity. We collected a representative fish sample from replicates of FPZs. Then, we used constrained ordinations to determine whether river geomorphology could predict fish assemblage variation. Our constrained ordination approach using geomorphology to predict fish assemblages resulted in significance using fish taxonomy and traits in several watersheds. The watersheds where constrained ordinations were not successful were next analyzed with unconstrained ordinations to examine patterns among fish taxonomy and traits with geomorphology variables. Common geomorphology variables as predictors for taxonomic fish assemblages were river gradient, valley width, and valley slope. Significant geomorphology predictors of functional traits were valley width‐to‐floor width ratio, elevation, gradient, and channel sinuosity. These results provide evidence that fish assemblages respond similarly and strongly to geomorphic variables on two continents.  相似文献   

5.
Fish assemblages across a complex,tropical freshwater/marine ecotone   总被引:2,自引:0,他引:2  
Synopsis Riverine fish assemblages in the temperate zone generally show strong longitudinal patterns of faunal turnover and increases in species richness with increasing stream order. We examined the composition and structure of tropical fish assemblages across a complex freshwater/marine ecotone in Tortuguero National Park on the Caribbean coast of Central America. Species turnover was high between four characteristic habitats that largely corresponded with a longitudinal gradient of stream order over distances of less than 30 km. Suites of common fish species characterized each habitat: creeks, rivers, lagoons, and the sea. In addition to the habitat endemics, several species spanned two habitat types, but only three species were collected in more than two habitats. Multivariate gradient analysis of fish assemblages reflected a gradient of habitats that to some extent corresponded to fluvial distances. Due to the unusual configuration of coastal lagoons lying parallel to the coast, the ordination gradient showed little correlation with linear distance to the coast. Environmental variables related to habitat size and salinity showed greatest correspondence with the fish assemblage ordination gradient. Invertebrate-feeding fishes were the predominant trophic group in 15 of 16 fish assemblages, and inland creek sites contained a greater proportion of herbivores and omnivores than other sites. The relative fraction of herbivorous and detritivorous fishes showed a monotonic decline along the longitudinal habitat gradient from inland to coast. Patterns of species composition and richness at Tortuguero Park appeared to agree well with earlier models of factors influencing temperate zone stream fishes. Headwaters have low aquatic primary productivity and contain small colonizing fish species subject to large fluctuations in local densities and intermittent competition. Lagoons contain both large and small species, the latter being restricted largely to shallow edge habitats by predation. Lagoons exhibit more lentic environmental conditions, experience relatively fewer periodic disturbances than headwaters, and their assemblages are inferred to be under relatively greater influence of biotic factors. Fish assemblages of rivers and caños (swampy side channels and braids) appear to be under less abiotic control than headwaters and influenced less by biotic factors than lagoons.  相似文献   

6.
Landscape-scale patterns of freshwater fish diversity and assemblage structure remain poorly documented in many areas of Central America, while aquatic ecosystems throughout the region have been impacted by habitat degradation and hydrologic alterations. Diadromous fishes may be especially vulnerable to these changes, but there is currently very little information available regarding their distribution and abundance in Central American river systems. We sampled small streams at 20 sites in the Sixaola River basin in southeastern Costa Rica to examine altitudinal variation in the diversity and species composition of stream fish assemblages, with a particular focus on diadromous species. A set of environmental variables was also measured in the study sites to evaluate how changes in fish assemblage structure were related to gradients in stream habitat. Overall, fish diversity and abundance declined steeply with increasing elevation, with very limited species turnover. The contribution of diadromous fishes to local species richness and abundance increased significantly with elevation, and diadromous species dominated assemblages at the highest elevation sites. Ordination of the sampling sites based on fish species composition generally arranged sites by elevation, but also showed some clustering based on geographic proximity. The dominant gradient in fish community structure was strongly correlated with an altitudinal habitat gradient identified through ordination of the environmental variables. The variation we observed in stream fish assemblages over relatively small spatial scales has significant conservation implications and highlights the ecological importance of longitudinal connectivity in Central American river systems.  相似文献   

7.
Comparative Microhabitat Use of Ecologically Similar Benthic Fishes   总被引:1,自引:0,他引:1  
Although benthic insectivorous fishes such as darters and sculpins represent a significant component of riffle communities, few studies have compared the habitat use of these non-related but ecologically similar fishes. The objectives of this study were to examine the habitat use of Etheostoma olmstedi (tessellated darter) compared to Cottus bairdi (mottled sculpin) in Nescopeck Creek and Cottus cognatus (slimy sculpin) in Jack's Creek, Pennsylvania through underwater observation. Etheostoma olmstedi occupied habitats with significantly deeper waters than those available, whereas adult and young of the year Cottus occupied habitats with significantly faster water velocities than those available. Canonical discriminant analysis revealed microhabitat partitioning between E. olmstedi and each Cottus species. Cottus bairdi and C. cognatus occupied significantly shallower habitats with faster water velocities than E. olmstedi. Sculpin species were observed most frequently under substrate whereas E. olmstedi occurred most frequently on the top surface of the substrate. Hurlbert's standardized niche breadth values indicated that C. bairdi and C. cognatus were habitat specialists with regard to water velocity measures, but exhibited generalistic patterns of depth and substrate size use. Etheostoma olmstedi was a habitat specialist with respect to depth, but exhibited generalistic patterns of resource use for substrate size. Differential habitat use by these benthic fishes is consistent with the hypothesis that resource partitioning facilitates species coexistence among stream fishes.  相似文献   

8.
Effects of floods on fish assemblages in an intermittent prairie stream   总被引:2,自引:0,他引:2  
1. Floods are major disturbances to stream ecosystems that can kill or displace organisms and modify habitats. Many studies have reported changes in fish assemblages after a single flood, but few studies have evaluated the importance of timing and intensity of floods on long‐term fish assemblage dynamics. 2. We used a 10‐year dataset to evaluate the effects of floods on fishes in Kings Creek, an intermittent prairie stream in north‐eastern, Kansas, U.S.A. Samples were collected seasonally at two perennial headwater sites (1995–2005) and one perennial downstream flowing site (1997–2005) allowing us to evaluate the effects of floods at different locations within a watershed. In addition, four surveys during 2003 and 2004 sampled 3–5 km of stream between the long‐term study sites to evaluate the use of intermittent reaches of this stream. 3. Because of higher discharge and bed scouring at the downstream site, we predicted that the fish assemblage would have lowered species richness and abundance following floods. In contrast, we expected increased species richness and abundance at headwater sites because floods increase stream connectivity and create the potential for colonisation from downstream reaches. 4. Akaike Information Criteria (AIC) was used to select among candidate regression models that predicted species richness and abundance based on Julian date, time since floods, season and physical habitat at each site. At the downstream site, AIC weightings suggested Julian date was the best predictor of fish assemblage structure, but no model explained >16% of the variation in species richness or community structure. Variation explained by Julian date was primarily attributed to a long‐term pattern of declining abundance of common species. At the headwater sites, there was not a single candidate model selected to predict total species abundance and assemblage structure. AIC weightings suggested variation in assemblage structure was associated with either Julian date or local habitat characteristics. 5. Fishes rapidly colonised isolated or dry habitats following floods. This was evidenced by the occurrence of fishes in intermittent reaches and the positive association between maximum daily discharge and colonisation events at both headwater sites. 6. Our study suggests floods allow dispersal into intermittent habitats with little or no downstream displacement of fishes. Movement of fishes among habitats during flooding highlights the importance of maintaining connectivity of stream networks of low to medium order prairie streams.  相似文献   

9.
Copp  G. H.  Carter  M. G.  & Faulkner  H. 《Journal of fish biology》2003,63(S1):248-249
Population behaviours associated with the migrations of coarse (non‐salmonid) fishes within river basins are amongst the most poorly understood dispersion mechanisms of temperate freshwater organisms, which in rivers are expected to be influenced by river discharge. We examined the timing and intensity of fish movements (via trapping) between the River Avon (Hampshire, England) and a small floodplain tributary, Ibsley Brook, and tested for correlations with trends in river discharge (i.e. mean cm of change in stage during trapping), water temperature and brook water velocity over twelve months in 1999–2000. 0‐group fishes dominated the catches. Intensities of movement between the brook and the river were similar in most months, but seasonal patterns were observed overall and for individual species. Few significant differences in overall numbers of fish were observed between the discharge trends, but many individual species demonstrated differences, mostly as more intense movement under fast rising discharge. Fish numbers in five species were correlated with river discharge trend, and movements in some species were correlated with the rate of temperature change (Δ° C 10 h sampling), and with changes in brook water velocity. Our results suggest daily movements between the river and small tributary brooks are triggered by changes in light intensity and water velocity, whereas seasonal movements of species between the river and brook are driven by changes in river discharge and water temperature, in particular associated with flood events. This study emphasizes the importance of connectivity in river systems, as fish movement between the Avon and its annexes occur under all flow regimes, but especially with rapidly rising discharge.  相似文献   

10.
Understanding of community assembly has been improved by phylogenetic and trait‐based approaches, yet there is little consensus regarding the relative importance of alternative mechanisms and few studies have been done at large geographic and phylogenetic scales. Here, we use phylogenetic and trait dispersion approaches to determine the relative contribution of limiting similarity and environmental filtering to community assembly of stream fishes at an intercontinental scale. We sampled stream fishes from five zoogeographic regions. Analysis of traits associated with habitat use, feeding, or both resulted in more occurrences of trait underdispersion than overdispersion regardless of spatial scale or species pool. Our results suggest that environmental filtering and, to a lesser extent, species interactions were important mechanisms of community assembly for fishes inhabiting small, low‐gradient streams in all five regions. However, a large proportion of the trait dispersion values were no different from random. This suggests that stochastic factors or opposing assembly mechanisms also influenced stream fish assemblages and their trait dispersion patterns. Local assemblages tended to have lower functional diversity in microhabitats with high water velocity, shallow water depth, and homogeneous substrates lacking structural complexity, lending support for the stress‐dominance hypothesis. A high prevalence of functional underdispersion coupled with phylogenetic underdispersion could reflect phylogenetic niche conservatism and/or stabilizing selection. These findings imply that environmental filtering of stream fish assemblages is not only deterministic, but also influences assemblage structure in a fairly consistent manner worldwide.  相似文献   

11.
The Gambia River of West Africa is a large unobstructed river, characterized by a natural flow regime and lateral connectivity across its floodplain. Construction of a major dam, however, is planned. We compared patterns of fish diversity, habitat use, assemblage structure, and the distribution of trophic position and body morphology in riverine and floodplain habitats in Niokolo Koba National Park, located downstream of the planned dam site. A total of 49 fish species were captured, revealing a lognormal distribution as expected for species‐rich assemblages. Fish species exhibited a range of habitat use patterns, from generalist to highly habitat‐specific, and appeared to migrate laterally among habitats between seasons. Species richness was homogenous among habitats in the wet season yet appeared to increase with isolation from the main river in the dry season. Fish assemblage structure was best explained by the interaction between habitat type and season, underlining the importance of the natural flow regime and lateral connectivity among floodplain habitats. The abundance of fishes having elongate bodies increased with isolation from the main channel in the wet season only. The distribution of fishes having compressed cross‐sectional morphology decreased with isolation from the main channel in the dry season only. These patterns of trait distribution support the conclusion that variation in hydrologic connectivity structures the fish assemblage. Our results suggest that altered flow regimes and loss of floodplain habitats after damming could lead to both decreased taxonomic and functional diversity of the fish assemblage.  相似文献   

12.
Anthropogenic activities can dramatically modify the riverine habitat of juvenile Atlantic salmon ( Salmo salar ). In the perspective of protecting and restoring the fluvial habitat, bioenergetic models are often used to estimate fish habitat quality. These models determine the habitat quality as the ratio between the energetic gains (food) and costs (growth, metabolism) of a fish. The energetic costs of swimming in a river are generally estimated using the average flow velocity without consideration of the effect of turbulence. Juvenile Atlantic salmon (JAS) live in rivers characterized by intense velocity fluctuations, which are often described as a succession of high‐ and low‐speed flow regions. These flow structures are likely to affect the JAS activity that consists of long periods of sit‐and‐wait at the top of a protuberant rock interrupted by short bursting motions to capture drifting food particles. To minimize the energetic costs, it is hypothesized that JAS use low‐speed flow regions to initiate and undertake their feeding motions.  To improve bioenergetic modelling, this study aimed at analyzing the relation between turbulent flow structures and the feeding behaviour of JAS in a natural gravel‐bed river. We filmed eight JAS during 30 min with a submersible video camera while simultaneously measuring velocity fluctuations close to the fish in the St. Marguerite River, Quebec, Canada. Our results show that the proportion of time used for feeding motions decreases with increasing turbulent intensity and mean flow velocity; and that JAS do not seem to prefer low‐speed flow regions to initiate their feeding motions.  相似文献   

13.
Aim We evaluated variation in fish assemblages on the basis of taxonomic composition and functional groups based on Pleistocene glacial boundaries in the Ohio River basin. We tested for the influence of habitat and hydrology on fish assemblage variation. Location Ohio River basin of North America, including the states of Ohio, Indiana and Illinois. Methods Fish collection sites were identified as Wisconsinan, pre‐Wisconsinan or unglaciated regions. Multivariate analyses, multi‐response permutation procedures, discriminant analysis and indicator species analyses were used to test whether taxonomic and functional assemblages were distinct among regions with varying glacial histories. Principal components analysis was used to identify habitat and water quality, as well as hydrological gradients that could be discerned by glacial region. Results We identified significant differences in both taxonomic and functional fish assemblage structure and habitat variation among regions that had different glaciation histories. The largest differences in taxonomic and functionally based fish communities were for unglaciated and pre‐Wisconsinan regions, while unglaciated and Wisconsinan regions were most similar. We correctly classified study regions in 71% and 60% of sites using taxonomy and functional analyses, respectively. Wisconsinan sites were characterized by Cyprinidae and Catostomidae assemblages with high abundances of tolerant fishes that tended to occur in habitats with reduced current velocity. Pre‐Wisconsinan sites were characterized by Cyprinidae, Catostomidae, Centrarchidae and Percidae families with increased abundances of intolerant fishes that tended to occur in habitats with coarser substrates and increased water velocity in streams of varying size. Unglaciated sites were characterized by Cyprinidae and Percidae families and were not closely associated with any habitat‐based functional group. Habitat in the unglaciated and pre‐Wisconsinan sites was significantly different from that in the Wisconsinan sites, which were characterized by increased channel structure and reduced stream size. Main conclusions Pleistocene glaciation events formed a lasting template of predictable regional differences in stream habitat and in the corresponding taxonomic and functional fish assemblage structures. While many factors impact the distribution of fishes, these results suggest that historical influences such as glaciation may be used to further explain the underlying mechanisms of spatial variation in fish assemblages.  相似文献   

14.
Summary 1. Many studies have shown negative effects of river drying on in‐stream animals. However, the influence of river drying on riparian animals remains poorly studied. We examined ground‐dwelling riparian arthropod assemblages along a drying section of the semi‐arid San Pedro River in southeastern Arizona, U.S.A. 2. We found strong differences in assemblage composition, taxon diversity and the abundance of key taxa between dry and flowing sites, with higher diversity and abundance of most taxa at flowing sites. 3. Changes in assemblage composition, taxon diversity and abundance of representative taxa were associated with a combined measure of water availability that included distance to water and type of water. Other environmental variables showed a weaker association with changes in these arthropod assemblages. 4. Thus, we found evidence that desert riparian arthropods are sensitive to river drying and to reduction in water resources. Increases in drying along this river may reduce the diversity and the abundance of many groups of ground‐dwelling arthropods, leading to marked shifts in community composition.  相似文献   

15.
Distinct fish assemblages were found at the mesohabitat scale in 14 streams in eastern Sabah, Malaysia. Sites were designated a priori as pool, run or riffle on the basis of physical habitat structure and properties. Principal components analysis of physical habitat data confirmed the validity of the a priori designation with a major axis of three correlated variables: water velocity, depth and substratum type. Canonical discriminant analysis on fish abundance and biomass data confirmed the existence of a specialized assemblage of fishes from riffle areas of all streams. Overall, pool and run assemblages were highly variable, dependent on stream size, but also variable between streams of the same size. Multiple regression of species richness, diversity, abundance and biomass data on principal components revealed significant but low correlations with measured habitat variables. Riffle habitats showed lower species richness and diversity but high abundance. The fish assemblage in riffles was dominated by balitorid species, specialized for fast-water conditions. Pool assemblages had the highest species diversity and were dominated by cyprinid species of a number of morphological and ecological guilds. Run assemblages were intermediate in assemblage characteristics between riffle and pool assemblages. Between-stream variation in assemblage composition was less than within-stream variation. Of 38 species collected, seven could be designated as riffle specialists, 18 as pool specialists and 13 as ubiquitous, although most of the latter showed size-specific habitat use with larger size classes found in slower, deeper water.  相似文献   

16.
1. Studies of mesic temperate and tropical rivers suggest an important role for floodplain habitats as nursery areas for larval and juvenile fishes. In arid‐land rivers the extent and duration of flooding is diminished and habitats and resources used by larval fishes are poorly known. Our study documented habitat and resource use of larval fishes in the Rio Grande, New Mexico, an arid‐land river. 2. Spatial and temporal distribution of larval and juvenile fishes and their inferred microhabitat preferences were studied during spring, summer and autumn, 2003. Stable carbon (13C : 12C) and nitrogen (15N : 14N) isotope ratios were measured to identify nutrient sources and characterise trophic positions of young‐of‐year fishes in this system. 3. Some fishes recruited during high flows (in spring), whereas others recruited during low‐flow periods in late summer. Regardless of the timing of reproduction, microhabitats with lower current velocity and higher temperature appeared to serve as vital nursery grounds for Rio Grande fishes. Ephemeral backwaters and disconnected side channels held the highest abundance and diversity of larvae and juveniles. 4. Stable isotope analyses revealed that fish larvae obtained carbon predominately from algal production in early summer, but used organic carbon derived from emergent macrophytes as river discharge decreased in mid‐summer. This shift may have been facilitated by microinvertebrate prey that grazed down edible algae and then switched to macrophytes in mid‐summer. Nitrogen isotope ratios did not differ among species or early life stages, suggesting that larval and juvenile fishes use similar food resources, especially when restricted to isolated pools in summer.  相似文献   

17.
Tropical reef corals are expanding on Japanese temperate coasts in response to rising sea surface temperatures, and many tropical fish juveniles have been observed routinely in these coral habitats. The present study explored how offshore tropical fish larvae locate coral habitat on the temperate coasts of Japan. Settlement-stage larvae were sampled between July and October 2009–2011 with light traps anchored on coral-replete and coral-free habitats (rocky habitats) at two-level distance (distance between each habitat type was 6 km and 500 m, respectively). Larval abundance was significantly higher on the coral-dominated habitat than that on the rocky habitat at both short and long distance sites, suggesting that coral habitats attract offshore tropical fish larvae. In underwater visual survey, Chaetodontidae and Pomacentridae juveniles were more abundant in coral habitats than in rocky habitats at both the sites, and a laboratory habitat choice experiment demonstrated that these larvae showed a preference for corals rather than rocks. In contrast, densities of juvenile Mullidae did not differ between the coral and rocky habitats, and the larvae did not show a substrate preference in the habitat choice experiment. These observations suggest that habitat choice at settlement possibly accounts for the differences in settlement patterns of tropical fishes between the two habitats. Taken together, our results showed that most tropical fish larvae colonize their settlement coast at a scale of ~0.5 km, and that they may locate coral habitats after reaching a reef. Moreover, the results suggest that coral habitat expansion on temperate coasts will lead to an increase in coral-associated tropical fishes and will change assemblage structures of fishes on temperate coasts.  相似文献   

18.
Larval fish ecology remains poorly understood in freshwater ecosystems. This study analysed the larval ecology of native and non-native fishes in a mediterranean-type watershed in Southern Iberian Peninsula. Assemblage structure of fish larvae was quantified at four distinct rivers sites, every 2 weeks between March and October 2004, and analysed against 16 variables reflecting river flow, temperature and habitat context. There was considerable spatial variation in taxonomic richness and abundance of larval assemblages, with either native or non-native fishes dominating in different sites. There was also a clear temporal separation between native and non-native fishes, with native cyprinids generally peaking earlier in the year than non-native fishes. Temporal fluctuations in larval assemblages across sites were mostly associated with variations in water temperature and transparency, but flow was an important factor shaping local assemblage structure. Larvae of native fishes appeared to found most suitable conditions in naturally flowing sites early in spring, when flow is high and water temperature stills low. These results suggest that preservation of natural flow peaks and adequate thermal contexts may be crucial for conservation of native fish fauna in mediterranean-type streams.  相似文献   

19.
Fish assemblage patterns in the littoral zone of a European reservoir   总被引:1,自引:0,他引:1  
1. Although reservoirs are common aquatic habitats in Europe, there is little quantitative information on the spatial organisation of fish assemblages inhabiting their littoral zones. Consequently, we characterised fish assemblage structure in the littoral zone of a reservoir (Lake Pareloup) in SW France during late spring, summer and early autumn (the growing season).
2. We measured the relative abundance of fish weekly, from mid-May to mid-October, using point abundance sampling by electrofishing. We identified temporal patterns in assemblage structure using hierarchical cluster analysis, and then characterised the spatial distribution of 17 defined ecospecies using a Kohonen self-organising map (SOM, an unsupervised Artificial Neural Network).
3. Our analyses revealed three distinct faunal structures within the littoral zone. From mid-May to mid-July, adults and young-of-the-year (0+) occupied separate habitats, with most 0+ fish in vegetated habitats and adults in open water. From mid-July to late August, some 0+ co-occurred with adults, but most 0+ fishes remained in vegetated areas. Finally, from late August to mid-October, most fish (both 0+ and adults) left the vegetation for unvegetated littoral habitats, the exception being fish species known to be dependent on macrophytes.
4. Contrary to patterns for adult fishes, the 0+ fish assemblage was dynamic. These dynamics were driven by ontogenetic species-specific habitat changes. Consequently, there was little evidence of stable assemblages or strong assemblage–habitat relationships that would be expected of an 'interactive' assemblage. It is likely that the patterns observed are a result of species-specific response to habitat availability in the lake.  相似文献   

20.
The curvilinear relationship between species richness and habitat area (species–area relationship (SAR)) is a fundamental ecological pattern. The relationship is often viewed from a long‐term perspective across relatively large spatial scales, reflecting a balance between immigration and extinction dynamics. We explored whether predictions of SAR also manifest over short time periods (days) in benthic habitat patches of a dynamic floodplain river where littoral faunal assemblages are continuously assembled and disassembled with changing water levels. We examined the relationship of patch size with faunal abundance (i.e. fish and aquatic invertebrates), taxonomic richness, trophic group richness and overall assemblage composition. Strong taxa–area relationships emerged despite the relatively short experimental time period (21 days); larger patches had more taxa and trophic groups. For the smallest patches, taxonomic richness was especially sensitive to abundance of individuals; abundance of individuals was a less important predictor of taxonomic and trophic group richness for the largest patches. Despite the relatively short time frame for study within this temporally dynamic ecosystem, our findings indicate a strong SAR for fishes and macroinvertebrates inhabiting patchy habitats in the littoral zone of this tropical river.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号