首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The extent of methylation of the internal C in the sequence CCGG in DNA from various eukaryotic sources has been determined using the restriction enzyme MspI known to be specific for this sequence. The methylation of the CCGG sequence is reflected in the restriction pattern obtained by DNA treated with MspI and its isoschizomer HpaII and analyzed by gel electrophoresis. A direct method for detection 5-methylcytosine in the sequence CCGG has been deviced. DNA fragments obtained with MspI were radioactively labeled at their 5' ends and subsequently degraded to the corresponding 5'-deoxyribonucleoside monophosphates. 5 methylcytidylic acid has been found in most of the 5' ends of MspI fragments of calf thymus DNA (about 90%) indicating heavy methylation of the sequence CCGG in calf thymus DNA. The results also reveal a symmetric methylation of both strands at this sequence in calf thymus DNA. In contrast, the CCGG sequence in other eukaryotic DNAs from organisms like Neurospora, Drosophila and Herpes virus proved to be undermethylated at this sequence.  相似文献   

2.
We have previously identified a 10.5-kilobase DNA sequence which is highly amplified and tandemly repeated in the mutant Streptomyces fradiae JS85. A library of DNA was prepared from S. fradiae T776, which does not contain amplified DNA. The library was screened by plaque hybridization to identify phage clones containing the unamplified 10.5-kilobase DNA sequence. Four phage isolates were identified which contained DNA homology to the amplified DNA sequence. This sequence was designated the amplifiable unit of DNA. None of the clones carried an entire amplifiable unit of DNA, and so overlapping regions were aligned to create a map of the entire region. Detailed restriction mapping identified a 2.2-kilobase direct repeat at the ends of the amplifiable unit of DNA. Analysis by Southern hybridization confirmed that the direct repeats were homologous to each other. The DNA of S. fradiae contained at least two additional copies of DNA that was homologous to the repeat sequence.  相似文献   

3.
A 74-bp DNA sequence coding for the pre sequence of human preproinsulin and containing EcoRI termini was synthesized by the chemical enzymatic method, joined with previously synthesized proinsulin DNA, and cloned in the M 13mp8 vector. A clone pNB82 -121 was identified by DNA sequence which confirmed the correct orientation of the pre sequence to the proinsulin DNA. The EcoRI site at the junction of pre- and proinsulin DNA was eliminated by removing a triplet ATT using a synthetic 19-mer primer. To simplify preproinsulin isolation and to study its expression in the M 13 system, a 25-bp affinity leader sequence coding for (glu)7 was inserted at the remaining EcoRI site; this put the preproinsulin DNA in a correct reading frame with the AUG initiation codon of beta-galactosidase. Preproinsulin was expressed under lac promoter control as analyzed by a radioimmunoassay (RIA) against C-peptide.  相似文献   

4.
The adenovirus type 12 (Ad12)-induced mouse tumor CBA-12-1-T contains greater than 30 copies of viral DNA integrated into cellular DNA. One of the sites of linkage between the left terminus of Ad12 DNA and mouse DNA was cloned, mapped and sequenced by using conventional techniques. The preinsertion sequence was also cloned from normal CBA/J mouse DNA and sequenced. The sequence data and blotting analyses demonstrated that at the site of linkage nine nucleotide pairs of viral DNA and at least 1500 to 1600 nucleotide pairs of cellular DNA were deleted. Up to the site of linkage, the cellular DNA sequence in CBA-12-1-T tumor DNA and the preinsertion sequence in CBA/J mouse cells were identical. The site of Ad12 DNA integration was found to be located close to a site of transition from unique to repetitive cellular DNA sequences. The nucleotide sequence at the site of linkage and at the preinsertion site revealed palindromic stretches of 5 and 10 nucleotides pairs, respectively. Scattered patch homologies (8-10 nucleotide pairs long) were observed between adenoviral and cellular DNAs. A hypothetical model for DNA arrangements at the site of recombination is presented.  相似文献   

5.
S M Halling  N Kleckner 《Cell》1982,28(1):155-163
Transposon Tn10 inserts at many sites in the bacterial chromosome, but preferentially inserts at particular hotspots. We believe we have identified the target DNA signal responsible for this specificity. We have determined the DNA sequences of 11 Tn10 insertion sites and identified a particular 6 base pair (bp) symmetrical consensus sequence (GCTNAGC) common to those sites. The sequences at some sites differ from the consensus sequence but only in limited and well defined ways. The sequences at some sites differ from the consensus sequence than do sequences at other sites, and the consensus sequence and closely related sequences are generally absent from potential target regions where Tn10 is known not to insert. Other aspects of the target DNA can significantly influence the efficiency with which a particular target site sequence is used. The 6 bp consensus sequence is symmetrically located within the 9 bp target DNA sequence that is cleaved and duplicated during Tn10 insertion. This juxtaposition of recognition and cleavage sites plus the symmetry of the perfect consensus sequence suggest that the target DNA may be both recognized and cleaved by the symmetrically disposed subunits of a single protein, as suggested for type II restriction endonucleases. There is plausible homology between the consensus sequence and the very ends of Tn10, compatible with recognition of transposon ends and target DNA by the same protein. The sequences of actual insertion sites deviate from the perfect consensus sequence in a way which suggests that the 6 bp specificity determinant may be recognized through protein-DNA contacts along the major groove of the DNA double helix.  相似文献   

6.
It is already known that phi X gene A protein converts besides phi X RFI DNA also the RFI DNAs of the single-stranded bacteriophages G4, St-1, alpha 3 and phi K into RFII DNA. We have extended this observations for bacteriophages G14 and U3. Restriction enzyme analysis placed the phi X gene A protein cleavage site in St-1 RF DNA in the HinfI restriction DNA fragment F10 and in the overlapping HaeIII restriction DNA fragment Z7. The exact position and the nucleotide sequence at the 3'-OH end of the nick were determined by DNA sequence analysis of the single-stranded DNA subfragment of the nicked DNA fragment F10 obtained by gelelectrophoresis in denaturing conditions. A stretch of 85 nucleotides of St-1 DNA around the position of the phi X gene A protein cleavage site was established by DNA sequence analysis of the restriction DNA fragment Z7F1. Comparison of this nucleotide sequence with the previously determined nucleotide sequence around the cleavage site of phi X gene A protein in phi X174 RF DNA and G4 RF DNA revealed an identical sequence of only 10 nucleotides. The results suggest that the recognition sequence of the phi X174 gene A protein lies within these 10 nucleotides.  相似文献   

7.
Treatment of UV-irradiated DNAs with Micrococcus luteus pyrimidine dimer-DNA glycosylase results in the formation of double-strand breaks due to cleavage at closely opposed pyrimidine dimers. To determine if the induction of closely opposed dimers is significantly affected by DNA nucleotide sequence, end-labeled DNA fragments of known nucleotide sequence were UV irradiated, incubated with pyrimidine dimer-DNA glycosylase, and analyzed by electrophoresis through nondenaturing polyacrylamide gels. Distinct bands of increased electrophoretic mobility were observed, indicating that bifilar cleavage had occurred with greater probability at specific sites in each DNA sequence. In vitro enzymatic photoreactivation of dimers prior to treatment with pyrimidine dimer-DNA glycosylase prevented the appearance of bands. DNA sequence analysis revealed the presence of closely opposed runs of pyrimidines at sites of more frequent bifilar cleavage. Our results indicate that the induction of closely opposed dimers occurs with greater probability at specific sites in DNA sequences and that such sites are characterized by the presence of closely opposed pyrimidine runs.  相似文献   

8.
J R Smiley  J Duncan    M Howes 《Journal of virology》1990,64(10):5036-5050
We investigated the sequence requirements for the site-specific DNA cleavages and recombinational genome isomerization events driven by the terminal repeat or a sequence of herpes simplex virus type 1 KOS DNA by inserting a series of mutated a sequences into the thymidine kinase locus in the intact viral genome. Our results indicate that sequences located at both extremities of the a sequence contribute to these events. Deletions entering from the Ub side of the a sequence progressively reduced the frequency of DNA rearrangements, and further deletion of the internal DR2 repeat array had an additional inhibitory effect. This deletion series allowed us to map the pac1 site-specific DNA cleavage signal specifying the S-terminal cleavage to a sequence that is conserved among herpesvirus genomes. Constructs lacking this signal were unable to directly specify the S-terminal cleavage event but retained a reduced ability to give rise to S termini following recombination with intact a sequences. Deletions entering from the Uc side demonstrated that the copy of direct repeat 1 located adjacent to the Uc region plays an important role in the DNA rearrangements induced by the a sequence: mutants lacking this sequence displayed a reduced frequency of novel terminal and recombinational inversion fragments, and further deletions of the Uc region had a relatively minor additional effect. By using a construct in which site-specific cleavage was directed to heterologous DNA sequences, we found that the recombination events leading to genome segment inversion did not occur at the sites of DNA cleavage used by the cleavage-packaging machinery. This observation, coupled with the finding that completely nonoverlapping portions of the a sequence retained detectable recombinational activity, suggests that inter-a recombination does not occur by cleavage-ligation at a single specific site in herpes simplex virus type 1 strain KOS. The mutational sensitivity of the extremities of the a sequence leads us to hypothesize that the site-specific DNA breaks induced by the cleavage-packaging system stimulate the initiation of recombination.  相似文献   

9.
O Bernard  N Hozumi  S Tonegawa 《Cell》1978,15(4):1133-1144
We have determined the nucleotide sequences of the germ line gene as well as a corresponding somatically mutated and rearranged gene coding for a mouse immunoglobulin lambdaI type light chain. These sequencing studies were carried out on three Eco RI-DNA fragments which had been cloned from BALB/c mouse embryos or a lambdaI chainsecreting myeloma, H2020. The embryonic DNA clone Ig 99lambda contains two protein-encoding segments, one for the majority of the hydrophobic leader (L) and the other for the rest of the leader and the variable (V) region of the lambda0 chain (Cohn et al., 1974); these segments are separated by a 93 base pair (bp) intervening sequence (I-small). The coding of the V region ends with His at residue 97. The second embryonic DNA clone Ig 25lambda includes a 39 bp DNA segment (J) coding for the rest of the conventionally defined V region (that is, up to residue 110), and also contains the sequence coding for the constant (C) region approximately 1250 untranslated bp (I-large) away from the J sequence. The J sequence is directly linked with the V-coding sequence in the myeloma DNA clone, Ig 303lambda, which has the various DNA segments arranged in the following order: 5' untranslated region, L, l-small, V linked with J, l-large, C, 3' untranslated sequence. The lg 303lambda V DNA sequence codes for the V region synthesized by the H2020 myeloma and is different from the lg 99lambda V DNA sequence by only two bases. No silent base change was observed between the two DNA clones for the entire sequence spanning the 5' untranslated regions and the V-coding segments. These results confirm the previously drawn conclusion that an active complete lambdaI gene arises by somatic recombination that takes place at the ends of the V-coding DNA segment and the J sequence. No sequence homology was observed at or near the sites of the recombination.  相似文献   

10.
The hamster cell line HE5 has been derived from primary hamster embryo cells by transformation with human adenovirus type 2 (Ad2). Each cell contains 2-3 copies of Ad2 DNA inserted into host DNA at apparently identical sites. The site of the junction between the right terminus of Ad2 DNA and hamster cell DNA was cloned and sequenced. The eight [corrected] right terminal nucleotides of Ad2 DNA were deleted. The unoccupied cellular DNA sequence in cell line HE5 , corresponding to the site of the junction between Ad2 and hamster cell DNA, was also cloned; 120-130 nucleotides in the cellular DNA were found to be identical to the cellular DNA sequence in the cloned junction DNA fragment, up to the site of the junction. The unoccupied and the occupied cellular DNAs and the adjacent viral DNA exhibited a few short nucleotide homologies. Patch homologies ranging in length from dodeca - to octanucleotides were detected by computer analyses at locations more remote from the junction site. When the right terminal nucleotide sequence of Ad2 DNA was matched to randomly selected sequences of 401 nucleotides from vertebrate or prokaryotic DNA, similar homologies were observed. It is likely that foreign (viral) DNA can be inserted via short sequence homologies at many different sites of cellular DNA.  相似文献   

11.
The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5′-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5′-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5′-GT*A and 5′- TGT* trinucleotide sequences, and 5′-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5′-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine–pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the ?3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.  相似文献   

12.
Single-stranded phage DNAs containing thymine glycols were prepared by oxidation with osmium tetroxide (OsO4) and were used as templates for DNA synthesis by E. coli DNA polymerase I. The induction of thymine glycol lesions in DNA, as measured by immunoassay, quantitatively accounted for an inhibition of in vitro DNA synthesis on modified templates. Analysis of termination sites for synthesis by DNA polymerase I (Klenow fragment) showed that DNA synthesis terminated at most template thymine sites in OsO4-treated DNA, indicating that incorporation occurred opposite putative thymine glycols in DNA. Nucleotides 5' and 3' to putative thymine glycol sites affect the reaction, however, since termination was not observed at thymines in the sequence 5'-CTPur-3'. Conversion of thymine glycols to urea residues in DNA by alkali treatment caused termination of DNA synthesis one nucleotide 3' to template thymine sites, including thymines in the 5'-CTPur-3' sequence, showing that the effect of surrounding sequence is on the elongation reaction by DNA polymerase rather than differential damage induction by OsO4.  相似文献   

13.
农用化学品污染对土壤微生物群落DNA序列多样性影响研究   总被引:34,自引:2,他引:32  
姚健  杨永华  沈晓蓉  陆维忠 《生态学报》2000,20(6):1021-1027
采用RAPD分子遗传标记技术研究了农用化学品不同使用环境下的4种土壤微生物群落DNA序列多样性的变化。结果表明,4种土壤微生物群落DNA序列在其丰富度、多样性指数、均匀度等方面均存在差异;农用化学品的使用会对土壤微生物群落在DNA分子水平上的多样性产生影响;而冰同的农用化学品对土壤微生物群落DNA序列多样性影响各不相同:化肥污染会引起某些土壤微生物的富集和一些微生物物种的丧失;农药杂会引起土壤微生  相似文献   

14.
The rate of DNA supercoil removal by human topoisomerase IB (TopIB) is slowed down by the presence of the camptothecin class of antitumor drugs. By preventing religation, these drugs also prolong the lifetime of the covalent TopIB-DNA complex. Here, we use magnetic tweezers to measure the rate of supercoil removal by drug-bound TopIB at a single DNA sequence in real time. This is accomplished by covalently linking camptothecins to a triple helix-forming oligonucleotide that binds at one location on the DNA molecule monitored. Surprisingly, we find that the DNA dynamics with the TopIB-drug interaction restricted to a single DNA sequence are indistinguishable from the dynamics observed when the TopIB-drug interaction takes place at multiple sites. Specifically, the DNA sequence does not affect the instantaneous supercoil removal rate or the degree to which camptothecins increase the lifetime of the covalent complex. Our data suggest that sequence-dependent dynamics need not to be taken into account in efforts to develop novel camptothecins.  相似文献   

15.
16.
Repetitive DNA sequences in the rice genome comprise more than half of the nuclear DNA. The isolation and characterization of these repetitive DNA sequences should lead to a better understanding of rice chromosome structure and genome organization. We report here the characterization and chromosome localization of a chromosome 5-specific repetitive DNA sequence. This repetitive DNA sequence was estimated to have at least 900 copies. DNA sequence analysis of three genomic clones which contain the repeat unit indicated that the DNA sequences have two sub-repeat units of 37 bp and 19 bp, connected by 30-to 90-bp short sequences with high similarity. RFLP mapping and physical mapping by fluorescence in situ hybridization (FISH) indicated that almost all copies of the repetitive DNA sequence are located in the centromeric heterochromatic region of the long arm of chromosome 5. The strategy for cloning such repetitive DNA sequences and their uses in rice genome research are discussed.  相似文献   

17.
D Kowalski  M J Eddy 《The EMBO journal》1989,8(13):4335-4344
We have discovered that DNA supercoiling, in the absence of replication proteins, induces localized unwinding in the Escherichia coli replication origin (oriC) at the same sequence opened by the dnaA initiator protein. The DNA helix at the tandemly repeated, 13mer sequence is thermodynamically unstable, as evidenced by hypersensitivity to single-strand-specific nuclease in a negatively supercoiled plasmid, and demonstrated by stable DNA unwinding seen after two-dimensional gel electrophoresis of topoisomers. A replication-defective oriC mutant lacking the leftmost 13mer shows no nuclease hypersensitivity in two remaining 13mers and no detectable DNA unwinding on two-dimensional gels. The replication defect in the oriC mutant can be corrected by inserting a dissimilar DNA sequence with reduced helical stability in place of the leftmost 13mer. Thus, the helical instability of the leftmost 13mer, not the specific 13mer sequence, is essential for origin function. The rightmost 13mer exhibits helical instability but differs from the leftmost 13mer in its strict sequence conservation among related bacterial origins. The repeated 13mer region appears to serve two overlapping functions: protein recognition and helical instability. We propose that the cis-acting sequence whose helical instability is required for origin function be called the DNA unwinding element (DUE).  相似文献   

18.
The hamster cell line CLAC1 originated from a tumor induced by injecting human adenovirus type 12 (Ad12) into newborn hamsters. Each cell contained about 12 copies of viral DNA colinearly integrated at two or three different sites. We have cloned and sequenced a DNA fragment comprising the site of junction between the left terminus of Ad12 DNA and cellular DNA. The first 174 nucleotides of Ad12 DNA were deleted at the site of junction. Within 40 nucleotides, there were one tri-, two tetra-, one penta-, and one heptanucleotide which were identical in the 174 deleted viral nucleotides and the cellular sequence replacing them. In addition, there were patch-type homologies ranging from octa- to decanucleotides between viral and cellular sequences. There is no evidence for a model assuming adenovirus DNA to integrate at identical cellular sites. The cellular DNA sequence corresponding to the junction fragment was cloned also from BHK21 (B3) hamster cells and sequenced. Up to the site of linkage with viral DNA, this middle repetitive cellular DNA sequence was almost identical with the equivalent sequence from CLAC1 hamster cells. Taken together with the results of previously published analyses (11, 12), the data suggest a model of viral (foreign) DNA integration by multiple short sequence homologies. Multiple sets of short patch homologies might be recognized as patterns in independent integration events. The model also accounts for the loss of terminal viral DNA sequences.  相似文献   

19.
A method is described for the determination of nucleotide sequences in DNA by using specific oligonucleotides as primers for copying specific regions by DNA polymerase. The method was applied to bacteriophage f1 DNA using the synthetic octanucleotide A-C-C-A-T-C-C-A as primer and a sequence (sequence A) of 81 nueleotides was determined. Synthesis was carried out in the presence of manganese and with one of the deoxyribotriphosphates (dCTP or dGTP) replaced by the corresponding ribotriphosphate so that mixed oligonucleotides were found which could be specifically split at the ribonucleotide residues by the appropriate ribonuclease or by alkali. The relative order of the digestion products was determined by fractionating the undigested oligonucleotides according to size on a two-dimensional system and digesting the isolated products. In the presence of rGTP the octanucleotide appeared to prime at a second site giving rise to a second sequence (B) besides sequence A. The complementary sequence to sequence A, which corresponds to the plus strand of f1 DNA and to the messenger RNA, contains five nonsense codons, four of which are in the same phase, and two possible initiation codons. It also contains a repetitive sequence which suggests its evolutionary origin by duplication.  相似文献   

20.
R E Streeck 《Gene》1980,12(3-4):267-275
The influence of cytosine methylation on the cleavage of DNA by the restriction nucleases Sau3A and TaqI has been investigated. Bovine satellite DNA fragments containing a GATCGA sequence, i.e. a Sau3A site overlapping with a TaqI site have been used in this study. The methylation of these fragments has been determined by sequence analysis. It has been found that a TaqI site (TCGA) methylated at cytosine in both DNA strands is still sensitive to double-strand cleavage. A Sau3A site (GATC), however, is rendered resistant to double-strand cleavage by methylation of a single cytosine. Fragments containing the "half-modified" Sau3A site are nicked in the unmethylated DNA strand. It has been shown by sequence analysis of nicked DNA that the single-strand break occurs at the same position which is cleaved in unmodified DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号