首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生长激素和生长激素受体的多样性   总被引:8,自引:0,他引:8  
李虹 《生物学杂志》2002,18(4):10-11,3
生长激素及其受体对动物生长发育起着重要的作用。转录过程选择性剪接和存在多种降解途径可能是GH或GHR产生多样性的原因。随着GH结构形态的改变,其功能也在发生变化。GH基因的多样性对鸡的抗病选择性反应与产蛋性能有相关,GH和GHR基因的多样性会影响奶牛的产奶生产性能。GHR的分子多样性可能导致动物生长发育模式的变异,例如动物的矮小病。  相似文献   

2.
Binding of growth hormone (GH) to its receptor (GHR) is a well-studied example of molecular recognition between a cytokine and its receptor. Extensive mutagenesis studies and several crystal structures have defined the key interactive amino acid residues that are involved in binding and subsequent receptor dimerization. This review encompasses each of the three molecular recognition events involved in GHR activation, namely binding of GH to its two receptors and the interactions that occur between these receptors. Particular attention is given to species and ligand specificity of hormone binding and to the molecular recognition events involved in receptor activation, including the possibility that a conformational change in the receptor is required.  相似文献   

3.
Growth hormone (GH) signaling is required for promoting longitudinal body growth, stem cell activation, differentiation, and survival and for regulation of metabolism. Failure to adequately regulate GH signaling leads to disease: excessive GH signaling has been connected to cancer, and GH insensitivity has been reported in cachexia patients. Since its discovery in 1989, the receptor has served a pivotal role as the prototype cytokine receptor both structurally and functionally. Phosphorylation and ubiquitylation regulate the GH receptor (GHR) at the cell surface: two ubiquitin ligases (SCFβTrCP2 and CHIP) determine the GH responsiveness of cells by controlling its endocytosis, whereas JAK2 initiates the JAK/STAT pathway. We used blue native electrophoresis to identify phosphorylated and ubiquitylated receptor intermediates. We show that GHRs occur as ∼500-kDa complexes that dimerize into active ∼900-kDa complexes upon GH binding. The dimerized complexes act as platforms for transient interaction with JAK2 and ubiquitin ligases. If GH and receptors are made in the same cell (autocrine mode), only limited numbers of ∼900-kDa complexes are formed. The experiments reveal the dynamic changes in post-translational modifications during GH-induced signaling events and show that relatively simple cytokine receptors like GHRs are able to form higher order protein complexes. Insight in the complex formation of cytokine receptors is crucially important for engineering cytokines that control ligand-induced cell responses and for generating a new class of therapeutic agents for a wide range of diseases.  相似文献   

4.
Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation of the GH receptor. Two mutated cDNAs encoding truncated GH receptors, GH-R1-294 and GH-R1-454, respectively, were generated by site-directed mutagenesis and transfected into the RIN cells. Both receptor mutants were expressed on the cell surface and displayed normal GH binding affinity. Whereas GH-R1-638 had a molecular mass of about 110 kDa, GH-R1-294 and GH-R1-454 showed molecular masses of 49 and 80 kDa, respectively. Cells expressing GH-R1-454 internalized GH to a similar extent as cells transfected with the full length receptor and the parent cell line, but GH-R1-294-expressing cells showed a markedly reduced capability of GH internalization. In contrast to cells transfected with GH-R1-638, none of the cell lines expressing truncated GH receptors exhibited any increase of the GH-stimulated insulin production. We conclude that domains within the COOH-terminal half of the cytoplasmic part of the GH receptor are required for transduction of the signal for GH-stimulated insulin synthesis, whereas cytoplasmic domains proximal to the transmembrane region are involved in receptor-mediated GH internalization.  相似文献   

5.
6.
Growth hormone (GH) is a protein that is known to stimulate postnatal growth, counter regulate insulin’s action and induce expression of insulin-like growth factor-1. GH exerts anabolic or catabolic effects depending upon on the targeted tissue. For instance, GH increases skeletal muscle and decreases adipose tissue mass. Our laboratory has spent the past two decades studying these effects, including the effects of GH excess and depletion, on the proteome of several mouse and human tissues. This review first discusses proteomic techniques that are commonly used for these types of studies. We then examine the proteomic differences found in mice with excess circulating GH (bGH mice) or mice with disruption of the GH receptor gene (GHR?/?). We also describe the effects of increased and decreased GH action on the proteome of adult patients with either acromegaly, GH deficiency or patients after short-term GH treatment. Finally, we explain how these proteomic studies resulted in the discovery of potential biomarkers for GH action, particularly those related with the effects of GH on aging, glucose metabolism and body composition.  相似文献   

7.
Kopchick JJ 《Hormone research》2003,60(Z3):103-112
The understanding of the mechanisms of growth hormone (GH) action has seen great accomplishments over the last two decades. These achievements include the cloning of a variety of GH and GH receptor (GHR) genes and cDNAs; solving of the three-dimensional structure of GH and the GH/GHR complex, and the discovery of GH antagonists. These GH antagonists have resulted in a new class of drugs with important clinical implications. Animal models in which the GH/insulin-like growth factor (IGF)-I axis has been perturbed also have resulted in many novel findings. We have now entered the era of genomics and proteomics. Genes and proteins that are up- or downregulated as a function of GH action (or lack thereof) will add to the repertoire of knowledge that will lead to a better understanding of the molecular basis of GH action.  相似文献   

8.
Most biological actions of growth hormone (GH) are mediated by the insulin-like growth factor I (IGF-I) that is produced after the interaction of the hormone with a specific cell surface receptor, the GH receptor (GHR). Even though the GH excess on fish metabolism is poorly known, several species have been genetically engineered for this hormone in order to improve growth for aquaculture. In some GH-transgenic fish growth has been dramatically increased, while in others high levels of transgene expression have shown inhibition of the growth response. In this study, we used for the first time different genotypes (hemizygous and homozygous) of a GH-transgenic zebrafish (Danio rerio) lineage as a model for studying the GH resistance induced by different GH transgene expression levels. The results obtained here demonstrated that homozygous fish did not grow as expected and have a lower condition factor, which implies a catabolic state. These findings are explained by a decreased IGF-I and GHR gene expression as a consequence of GH resistance. Together, our results demonstrated that homozygous GH-transgenic fish showed similar characteristics to the starvation-induced fish and could be an interesting model for studying the regulation of the GH/GHR/IGF-I axis in fish.  相似文献   

9.
定量测定黑鲷生长激素受体mRNA的液相杂交/RNase保护法   总被引:4,自引:0,他引:4  
目的 建立液相杂交 核糖核酸酶保护测定 (RibonucleaseProtectionAssay,RPA)技术定量检测黑鲷(Sparusmacrocephalus)生长激素受体mRNA水平。方法 将黑鲷生长激素受体cDNA片断亚克隆至pGEM T载体 ,制备特异性的放射性反义RNA探针及正义RNA ,将反义RNA探针与正义RNA及样品总RNA进行液相杂交 ,用RNaseA和RNaseT1 降解杂交产物的单链RNA ,双链杂交体得到保护 ,然后检测杂交体的分子大小及放射强度。结果 检测出了黑鲷生长激素受体反义RNA探针与正义RNA及样品总RNA的特异性杂交片断 ,由此建立了定量测定黑鲷生长激素受体mRNA的液相杂交 RNase保护法 ,并采用该方法在黑鲷的多种组织中检测出了生长激素受体基因的表达 ,表达水平在肝脏中最高。该结果与我们曾采用生长激素放射受体分析法对黑鲷生长激素受体所研究的结果相吻合。结论 为进一步深入研究鱼类生长激素受体分子内分泌的调控理论提供了有力手段。  相似文献   

10.
Growth hormone (GH) is a well established participant in several complex physiological processes including growth, differentiation, and metabolism. Recombinant human GH is a drug that has been approved for use for several clinical conditions where the action of GH is diminished or completely lacking. Thus there is considerable interest in developing novel drugs that modify the function of GH. Only in the last several decades have the detailed structural features of GH along with its interaction with its receptor been elucidated. In this review we summarise the basic structural and functional properties of GH, its receptor and their interaction. In addition, we discuss the discovery and development of an effective GH receptor antagonist, pegvisomant, and summarise potential therapeutic uses of this drug.  相似文献   

11.
Because many growth factor receptors are ligand-activated tyrosine protein kinases, the possibility that growth hormone (GH), a hormone implicated in human growth, promotes tyrosyl phosphorylation of its receptor was investigated. 125I-Labeled human GH was covalently cross-linked to receptors in intact 3T3-F442A fibroblasts, a cell line which differentiates into adipocytes in response to GH. The cross-linked cells were solubilized and passed over a column of phosphotyrosyl binding antibody immobilized on protein A-Sepharose. Immunoadsorbed proteins were eluted with a hapten (p-nitrophenyl phosphate) and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The eluate from the antibody column contained an Mr 134,000 125I-GH-receptor complex. A similar result was obtained when the adipocyte form of 3T3-F442A cells was used in place of the fibroblast form. O-Phosphotyrosine prevented 125I-GH-receptor complexes from binding to the antibody column, whereas O-phosphoserine and O-phosphothreonine did not. In studies of GH-promoted phosphorylation in 3T3-F442A fibroblasts labeled metabolically with [32P]Pi, GH was shown to stimulate formation of a 32P-labeled protein which bound to immobilized phosphotyrosyl binding antibodies. The molecular weight of 114,000 obtained for this protein is similar to that expected for non-cross-linked GH receptor. The Mr 114,000 phosphorylated protein could be immunoprecipitated with anti-GH antibody, indicating that GH remained noncovalently bound to this protein during absorption to and elution from the immobilized phosphotyrosyl binding antibody. Phosphoamino acid analysis after both limited acid hydrolysis and extensive base hydrolysis of the Mr 114,000 phosphoprotein confirmed the presence of phosphotyrosyl residues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Growth hormone (GH) is integrally involved in the development of the central nervous system (CNS), as well as during its recovery from injury, two processes that share many similarities and may influence CNS functionality. This review discusses some of the most recent findings in the field and, in particular, the ontogeny, distribution, regulation and putative functions of GH and its receptor within the CNS, particularly during development. The relative roles of peripheral GH, acting in part through insulin-like growth factor-I, and of the autocrine/paracrine GH system within the brain are considered. The potential role of GH as a therapeutic agent to influence brain development and function is discussed.  相似文献   

14.
Somatostatin (SST) regulates growth hormone (GH) secretion from pituitary somatotrophs by interacting with members of the SST family of G-protein-coupled receptors (sst1-5). We have used potent, nonpeptidyl SST agonists with sst2 and sst5 selectivity to determine whether these receptor subtypes are involved in regulating growth hormone releasing hormone (GHRH) stimulated secretion. GHRH stimulated GH release from pituitary cells in a dose-dependent manner, and this secretion was inhibited by Tyr(11)-SST-14, a nonselective SST analog. A sst2 selective agonist, L-779,976, potently inhibited GHRH-stimulated GH release. In addition, L-817, 818, a potent sst5 receptor selective agonist, also inhibited GH secretion, but was approximately 10-fold less potent (P < 0.01, ANOVA) in inhibiting GH release than either Tyr(11)-SST-14 or L-779, 976. These results show that both sst2 and sst5 receptor subtypes regulate GHRH-stimulated GH release from rat pituitary cells.  相似文献   

15.
A series of structurally diverse growth hormone (GH) releasing substances have been synthesized that are distinct from the naturally occurring GH releasing hormone (GHRH). These synthetic molecules range from the family of GH releasing peptides and mimetics such as MK-0677. The physiological importance of these molecules and their receptor is exemplified by studies in the elderly. For example, when MK-0677 was administered chronically to 70- to 90-year-old subjects, once daily, the age-related reduced amplitude of GH pulses was reversed to that of the physiological profile typical of young adults. In 1996, the synthesis of (35)S-MK-0677 was reported and used as a ligand to characterize a common receptor (GH secretagogue receptor [GHS-R]) for the GH releasing substances. The GHS-R is distinct from the GHRH receptor. Subsequently, the GHS-R gene was cloned and shown to encode a unique G-protein coupled receptor with a deduced protein sequence that was 96% identical in human and rat. Because of the physiological importance of the GHS-R, a search for family members (FMs) was initiated and its molecular evolution investigated. Three FMs GPR38, GPR39 and FM3 were isolated from human genomic libraries. To accelerate the identification of other FMs, a vertebrate organism with a compact genome distant in evolutionary terms from humans was exploited. The pufferfish (Spheroides nephelus) genome provides an ideal model for the discovery of human genes. Three distinct full-length clones encoding proteins of significant sequence identity to the human GHS-R were cloned from the pufferfish. Remarkably, the pufferfish gene with highest sequence homology to the human receptor was activated by the hexapeptide and non-peptide ligands. These intriguing results show that the structure and function of the ligand binding pocket of the human GHS-R has been highly conserved in evolution ( approximately 400 million years) and strongly suggests that an endogenous natural ligand has been conserved. This new information is consistent with a natural ligand for the GHS-R playing a fundamentally important and conserved role in physiology.  相似文献   

16.
The authors report three cases of Laron-type dwarfism (LTD) having clinical features similar to those of congenital growth hormone (GH) deficiency, but with high levels of plasma GH and a lack of effect of exogenous GH on their growth. The main plasma growth hormone binding protein (GHBP), recently identified and considered as being identical to the extracellular part of the cell receptor to GH, was absent in two of the three patients, and lower than normal in their parents, suggesting a defect of the cell GH receptor. The third patient and his parents had a normal level of GHBP, suggesting a defect limited to the intracellular domain of the receptor or lying beyond the receptor. The conclusion is that there are two different biochemical abnormalities corresponding to LTD.  相似文献   

17.
A specific growth hormone (GH) binding protein of Mr approx. 100000 has been demonstrated in the cytosolic fraction (200000g supernatant) of pregnant-rabbit liver by gel filtration techniques. This binding species was detectable by a standard charcoal separation procedure but not by the widely used poly(ethylene glycol) precipitation method. The GH binding protein had similar binding characteristics to those of classical membrane-bound GH receptors. The kinetics of association and dissociation, binding affinity (2.56 X 10(9)1/mol) and hormonal specificity have been established. There appears to be equal or greater amounts of GH binding protein in the cytosol than in the membrane fraction. The presence of the GH binding protein in rabbit liver cytosol was substantiated by its selective purification on a GH-Affigel 15 affinity column. This technique has resulted in a 200-300-fold purification with no substantial change in binding affinity. The ability of a concanavalin A-Sepharose affinity column to also bind the cytosolic binding protein indicates that, like the membrane-bound GH receptor, it is a glycoprotein. This is the first report of a cytosolic binding protein for GH and raises important questions regarding its potential physiological role in the mechanism of action of GH.  相似文献   

18.
The vasoactive intestinal polypeptide (VIP) receptor was characterized on the GH3 rat pituitary tumor cell line using competitive binding studies with peptides having sequence homology with VIP. Further studies investigated receptor coupling to the adenylate cyclase complex by measurement of cAMP levels. Finally, the molecular weight of the receptor was estimated by affinity labeling techniques. Studies using 125I-VIP and unlabeled competing peptides revealed a single class of high affinity binding sites with a dissociation constant (KD) of 17 +/- 2 nM (mean +/- S.E.M.) for VIP, 275 +/- 46 nM for peptide histidine isoleucine (PHI), and 1380 +/- 800 nM for human pancreatic growth hormone releasing factor (GHRF). VIP and PHI each stimulated intracellular cAMP accumulation in a dose-dependent manner; both peptides demonstrated synergism with forskolin. In contrast, GHRF neither stimulated accumulation of cAMP nor demonstrated synergism with forskolin. VIP plus PHI (1 microM each) caused no significant increase in cAMP over either VIP or PHI alone, implying that the two peptides act through the same receptor. Covalent crosslinking of 125I-VIP to its binding site using either disuccinimidyl suberate (DSS) or ethylene glycol bis(succinimidyl succinate) (EGS) was followed by SDS-PAGE and autoradiography. The result is consistent with an Mr 47 000 VIP-binding subunit comprising or being associated with the VIP receptor of GH3 pituitary tumor cells.  相似文献   

19.
Melanoma is the most aggressive skin cancer. Its aggressiveness is most commonly attributed to ERK pathway mutations leading to constitutive signaling. Though initial tumor regression results from targeting this pathway, resistance often emerges. Interestingly, interrogation of the NCI-60 database indicates high growth hormone receptor (GHR) expression in melanoma cell lines. To further characterize melanoma, we tested responsiveness to human growth hormone (GH). GH treatment resulted in GHR signaling and increased invasion and migration, which was inhibited by a GHR monoclonal antibody (mAb) antagonist in WM35, SK-MEL 5, SK-MEL 28 and SK-MEL 119 cell lines. We also detected GH in the conditioned medium (CM) of human melanoma cell lines. GHR, JAK2 and STAT5 were basally phosphorylated in these cell lines, consistent with autocrine/paracrine GH production. Together, our results suggest that melanomas are enriched in GHR and produce GH that acts in an autocrine/paracrine manner. We suggest that GHR may constitute a therapeutic target in melanoma.  相似文献   

20.
Park P  Cohen P 《Hormone research》2004,62(Z1):59-65
Growth hormone (GH) therapy has evolved rapidly over the past decade, and continuing research has established a clear role for therapeutic GH in a wide spectrum of disorders, including idiopathic GH deficiency (childhood- and adult-onset), Turner syndrome, Prader-Willi syndrome, small-for-gestational age children with failure of catch-up growth, AIDS-related catabolism, children with chronic renal failure, and idiopathic short stature. Although GH is used therapeutically in a wide variety of conditions, actual guidelines regarding the logistics of GH dosing continue to evolve, with data emerging regarding efficacy and safety. This review proposes a role for insulin-like growth factor I measurement in optimizing GH dosing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号