首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the structural features of Indoprofen and PIB, a series of isoindol-1,3-diones 1a-k and isoindol-1-ones 2a-l were designed and synthesized. These 23 compounds were evaluated by competitive binding assay against aggregated Abeta42 fibrils using [(125)I]TZDM. All the isoindolone derivatives showed very good binding affinities with K(i) values in the subnanomolar range (0.42-0.94 nM). Among them, isoindol-1,3-diones 1i and 1k and isoindol-1-ones 2c and 2i exhibited excellent binding affinities (K(i)=0.42-0.44 and 0.46-0.49 nM) than those of Indoprofen (K(i)=0.52 nM) and PIB (K(i)=0.70 nM). These results suggest that isoindolones could be served as a scaffold for potential AD diagnostic probes to monitor Abeta fibrils.  相似文献   

2.
New ferulic acid and benzothiazole dimer derivatives were synthesized and evaluated by in vitro competition assay using [(125)I]TZDM for their specific binding affinities to Abeta fibrils. In particular, 4a showed the most excellent binding affinity (K(i)=0.53 nM), compared to PIB (K(i)=0.77 nM), for benzothiazole binding sites of Abeta(1-42) fibrils. This result suggests a possibility of a potential AD diagnostic probe for detection of Abeta fibrils.  相似文献   

3.
A range of imaging agents for use in the positron emission tomography of Alzheimer's disease is currently under development. Each of the main compound classes, derived from thioflavin T (PIB), Congo Red (BSB), and aminonaphthalene (FDDNP) are believed to bind to mutually exclusive sites on the beta-amyloid (Abeta) peptide fibrils. We recently reported the presence of three classes of binding sites (BS1, BS2, BS3) on the Abeta fibrils for thioflavin T derivatives and now extend these findings to demonstrate that these sites are also able to accommodate ligands from the other chemotype classes. The results from competition assays using [3H]Me-BTA-1 (BS3 probe) indicated that both PIB and FDDNP were able to displace the radioligand with Ki values of 25 and 42 nM, respectively. BSB was unable to displace the radioligand tracer from the Abeta fibrils. In contrast, each of the compounds examined were able to displace thioflavin T (BS1 probe) from the Abeta fibrils when evaluated in a fluorescence competition assay with Ki values for PIB, FDDNP, and BSB of 1865, 335, and 600 nM, respectively. Finally, the Kd values for FDDNP and BSB binding to Abeta fibrils were directly determined by monitoring the increases in the ligand intrinsic fluorescence, which were 290 and 104 nM, respectively. The results from these assays indicate that (i) the three classes of thioflavin T binding sites are able to accommodate a wide range of chemotype structures, (ii) BSB binds to two sites on the Abeta fibrils, one of which is BS2, and the other is distinct from the thioflavin T derivative binding sites, and (iii) there is no independent binding site on the fibrils for FDDNP, and the ligand binds to both the BS1 and BS3 sites with significantly lower affinities than previously reported.  相似文献   

4.
This paper describes a novel series of stilbenylbenzoxazole (SBO) and stilbenylbenzothiazole (SBT) derivatives for beta-amyloid specific binding probes. These 24 compounds were synthesized and evaluated by competitive binding assay against beta-amyloid 1-42 (Abeta42) aggregates using [(125)I]TZDM. All the derivatives displayed higher binding affinities with K(i) value in the subnanomolar range (0.10-0.74 nM) than Pittsburgh Compound-B (PIB) (0.77 nM). Among these derivatives, SBT-2, 5-fluoroethoxy-2-{4-[2-(4-methylaminophenyl)vinyl]phenyl}benzothiazole, showed lowest K(i) value (0.10 nM). In conclusion, the preliminary results suggest that these compounds are implying a possibility as a probe for detection of Abeta fibrils in Alzheimer's disease (AD) patients.  相似文献   

5.
The presence of β‐amyloid plaques in brain is a hallmark of Alzheimer’s disease (AD) and serves as a biomarker for confirmation of diagnosis postmortem. Positron emission tomography (PET) radioligands such as Pittsburgh compound B ([11C]‐2‐(3‐fluoro‐4‐methylamino‐phenyl)‐benzothiazol‐6‐ol) (PIB) binds selectively to β‐amyloid and are promising new tools supporting the clinical diagnoses of AD. In addition, such methodology may be useful for evaluation of new drugs aiming at reduction of amyloid plaque load. The objective of this study is to develop a new amyloid selective PET radioligand with higher signal‐to‐background ratio when compared with existing amyloid PET ligands. The lead compound, AZD2184, (2‐[6‐(methylamino)pyridin‐3‐yl]‐1,3‐benzothiazol‐6‐ol) was found to have high affinity for amyloid fibrils in vitro (Kd: 8.4 ± 1.0 nM). Two minutes after i.v. administration in rats, about 1% of the dose was in brain. In vitro autoradiography on cortical brain sections from amyloid‐beta precursor protein/presenilin 1 (APP/PS1) mice and AD patients showed that while [3H]AZD2184 and [3H]PIB are mutually displaceable, [3H]AZD2184 displays a higher signal‐to‐background ratio primarily by virtue of lower background binding levels. The ratio of binding ability in prefrontal cortex (high plaque load) to subcortical white matter (background) was 4.5 for [3H]AZD2184 and 0.8 for [3H]PIB at 1 nM. In adjacent cortical sections from APP/PS1 mouse as well as from AD cortical tissue, [3H]AZD2184 and antibodies to human β‐amyloid labeled identical structures. In vivo administration of [3H]AZD2184 to APP/PS1 mice further showed that [3H]AZD2184 labels amyloid deposits with low non‐specific background binding. Taken together, the pre‐clinical profile of AZD2184 in relation to the reference ligand PIB, suggests that 11C‐labeled AZD2184 is a potential radioligand for PET‐visualization of β‐amyloid deposits in the living human brain.  相似文献   

6.
β-Amyloid (Aβ) deposits are one of the major histopathological hallmarks of Alzheimer's disease (AD). The amyloid-imaging positron emission tomography (PET) tracer [11C]PIB (N-methyl[11C]2-(4′-methylaminophenyl)-6-hydroxy-benzothiazole) is used in the assessment of Aβ deposits in the human brain. [11C]PIB-amyloid interaction and insoluble Aβ40 and Aβ42 peptide levels in the brain were quantified in postmortem tissue from nine AD patients and nine age-matched control subjects in the temporal, frontal and parietal cortices and the cerebellum. Autoradiographical studies showed significantly higher densities of specific [11C]PIB-amyloid binding in gray matter in the temporal and parietal cortex (62 fmol/mg tissue) in AD patients as compared to control subjects, whereas the density was somewhat lower in the frontal cortex (56 fmol/mg tissue). No specific binding could be detected in the AD cerebellum or in the tissues from the control subjects (≤5 fmol/mg tissue). Insoluble Aβ40 and total Aβ levels (i.e. sum of Aβ40 and Aβ42) were significantly higher in patients than in controls in all measured cortical regions as determined using ELISA, which was confirmed using immunohistochemistry. The present findings show a more regional selective distribution of [11C]PIB amyloid binding than previously reported. Moreover, it is suggested that some of the [11C]PIB binding and insoluble Aβ seen in control subjects may be amyloid in the blood vessels.  相似文献   

7.
The positron emission tomography (PET) ligand 11C‐labeled Pittsburgh compound B (PIB) is used to image β‐amyloid (Aβ) deposits in the brains of living subjects with the intent of detecting early stages of Alzheimer's disease (AD). However, deposits of human‐sequence Aβ in amyloid precursor protein transgenic mice and non‐human primates bind very little PIB. The high stoichiometry of PIB:Aβ binding in human AD suggests that the PIB‐binding site may represent a particularly pathogenic entity and/or report local pathologic conditions. In this study, 3H‐PIB was employed to track purification of the PIB‐binding site in > 90% yield from frontal cortical tissue of autopsy‐diagnosed AD subjects. The purified PIB‐binding site comprises a distinct, highly insoluble subfraction of the Aβ in AD brain with low buoyant density because of the sodium dodecyl sulfate‐resistant association with a limited subset of brain proteins and lipids with physical properties similar to lipid rafts and to a ganglioside:Aβ complex in AD and Down syndrome brain. Both the protein and lipid components are required for PIB binding. Elucidation of human‐specific biological components and pathways will be important in guiding improvement of the animal models for AD and in identifying new potential therapeutic avenues.

  相似文献   


8.
Imaging the progression of Alzheimer's disease would greatly facilitate the discovery of therapeutics, and a wide range of ligands are currently under development for the detection of beta-amyloid peptide (Abeta)-containing plaques by using positron emission tomography. Here we report an in-depth characterization of the binding of seven previously described ligands to in vitro generated Abeta-(1-40) polymers. All of the compounds were derived from the benzothiazole compound thioflavin T and include 2-[4'-(methylamino)phenyl]benzothiazole and 2-(4'-dimethylamino-)phenyl-imidazo[1,2-a]-pyridine derivatives, 2-[4'-(dimethylamino)phenyl]-6-iodobenzothiazole and 2-[4'-(4'-methylpiperazin-1-yl)phenyl]-6-iodobenzothiazole, and a benzofuran compound (5-bromo-2-(4-dimethylaminophenyl)benzofuran). By using a range of fluorescent and radioligand binding assays, we find that these compounds display a more complex binding pattern than described previously and are consistent with three classes of binding sites on the Abeta fibrils. All of the compounds bound with very high affinity (low nm K(d)) to a low capacity site (BS3) (1 ligand-binding site per approximately 300 Abeta-(1-40) monomers) consistent with the previously recognized binding site for these compounds on the fibrils. However, the compounds also bound with high affinity (K(d) approximately 100 nm) to either one of two additional binding sites on the Abeta-(1-40) polymer. The properties of these sites, BS1 and BS2, suggest they are adjacent or partially overlapping and have a higher capacity than BS3, occurring every approximately 35 or every approximately 4 monomers of Abeta-(1-40)-peptide, respectively. Compounds appear to display selectivity for BS2 based on the presence of a halogen substitution (2-[4'-(dimethylamino)phenyl]-6-iodobenzothiazole, 2-[4'-(4'-methylpiperazin-1-yl)phenyl]-6-iodobenzothiazole, and 5-bromo-2-(4-dimethylaminophenyl)benzofuran) on their aromatic ring system. The presence of additional ligand-binding sites presents potential new targets for ligand development and may allow a more complete modeling of the current positron emission tomography data.  相似文献   

9.
C Martin  C F Higgins  R Callaghan 《Biochemistry》2001,40(51):15733-15742
Conceptually one may envisage that substrate binding sites on the ABC transporter P-gp cycle between high- and low-affinity conformations in response to signals arising from nucleotide hydrolysis to effect active transport. A radioligand binding assay was used to characterize the interaction of [3H]vinblastine with P-gp and determine how drug binding site parameters are altered during a catalytic cycle of P-gp. In the absence of nucleotide, we show that [3H]vinblastine interacts with a single class of binding site with high affinity (K(d) = 80 +/- 18 nM). In the presence of the nonhydrolyzable ATP analogue AMP-PNP, the drug binding site was in a low-affinity conformation, manifest by a 9-fold increase in K(d) (K(d) = 731 +/- 20 nM). There was no alteration in the binding capacity, reflecting a complete shift in the high-affinity site to a low-affinity form. The posthydrolytic (Mg-ADP-V(i) bound) form of P-gp also exhibited low-affinity substrate binding (K(d) = 446 +/- 57 nM). Restoration of the high-affinity drug binding site conformation (K(d) = 131 +/- 32 nM) did not occur until release of phosphate from the posthydrolysis P-gp-Mg-ADP-P(i). complex. Our results suggest that alteration of the affinity of the vinblastine binding site involves only one nucleotide binding domain per transport cycle. The binding of ATP provides the signal to instigate this change, while release of phosphate post-ATP hydrolysis returns the transporter to its original state to complete the cycle.  相似文献   

10.
Despite the application of amyloid imaging agents such as PIB, SB13, and FDDNP in Alzheimer's disease (AD) patients, the successful use of these agents in transgenic mice models of AD has not been reported to date. As a first step in understanding the behaviour of these ligands in transgenic models of AD, we have investigated in a series of in vitro ligand binding assays the interaction of selected agents, including PIB, FDDNP, SB13, and BSB, with amyloid fibrils produced from rodent Abeta(1-40) (roAbeta) peptide. The data indicate that the ligand binding affinities together with the pattern and number of binding sites on the roAbeta fibrils are broadly conserved with that reported previously for human Abeta(1-40) (huAbeta) fibrils. However, characterisation of huAbeta fibrils formed in the presence of increasing amounts of roAbeta (1, 5, 10% w/w) demonstrated a dose-dependent reduction in the number of high affinity [(3)H]Me-BTA-1 binding sites such that at the highest amount of roAbeta the specific signal was reduced by approximately 95%. These studies suggest that (i) the presence of small amounts of roAbeta in huAbeta fibrils has the potential to cause subtle ultrastructural alterations in the polymers and (ii) the weak binding signal observed in vivo in the transgenic mouse models of AD may in part be due to the decreased number of high affinity binding sites on the Abeta fibrils.  相似文献   

11.
The distinctive cortical uptake of the tracer 18F-FDDNP (2-(1-{6-[(2-fluoroethyl(methyl)amino]-2-naphthyl}ethylidene)malononitrile) in Alzheimer's disease (AD) is believed to be because of its binding to both neurofibrillary tangles (NFTs) and highly fibrillar senile plaques. We therefore investigated the binding of a tracer concentration of 3H-FDDNP to brain sections containing AD hallmark pathologies. Semi-adjacent sections were labelled with 3H-PIB (Pittsburgh compound-B, 2-[4'-(methylamino)phenyl]-6-hydroxybenzothiazole) and 14C-SB13 (4- N -methylamino-4'-hydroxystilbene) for comparison. Neocortical sections containing widespread senile plaques and cerebrovascular amyloid angiopathy, produced a sparse and weak labelling following incubation with 3H-FDDNP. Furthermore, in sections containing NFTs, there was no overt labelling of the pathology by 3H-FDDNP. In contrast, sections labelled with 3H-PIB displayed extensive labelling of diffuse plaques, classical plaques, cerebrovascular amyloid angiopathy and NFTs. 14C-SB13 produced a broadly similar binding pattern to PIB. Radioligand binding assays employing in vitro generated amyloid-β peptide fibrils demonstrated a ∼10-fold reduced affinity for 3H-FDDNP (85.0 ± 2.0 nM) compared with 3H-PIB (8.5 ± 1.3 nM). These data provide an alternative mechanistic explanation for the observed low cortical uptake of 18F-FDDNP in AD; in that the ligand is only weakly retained by the hallmark neuropathology because of its low affinity for amyloid structures.  相似文献   

12.
The agonist, [3H](-)[S]-1-(2-amino-2-carboxyethyl)-5-fluoro-pyrimidine-2,4-dione ([3H](S)F-Willardiine) binding to functional alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors of resealed plasma membrane vesicles and nerve endings freshly isolated from the rat cerebral cortex displayed two binding sites (K(D1)=33+/-7 nM, B(MAX1)=1.6+/-0.3 pmol/mg protein, K(D2)=720+/-250 nM and B(MAX2)=7.8+/-4.0 pmol/mg protein). The drug which impairs AMPA receptor desensitisation, 6-chloro-3,4-dihydro-3-(2-norbornene-5-yl)-2H-1,2,4-benzothiadiazine-7-sulphonamide-1,1-dioxide (cyclothiazide, CTZ) fully displaced the [3H](S)F-Willardiine binding at a concentration of 500 microM. In the presence of 100 microM CTZ (K(I(CTZ))=60+/-6 microM), both the antagonist [3H]-1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo(F)quinoxaline-7-sulfonamide ([3H]NBQX: K(D)=24+/-4 nM, B(MAX)=12.0+/-0.1 pmol/mg protein) and the high-affinity agonist binding showed similar affinity reduction ([3H](S)F-Willardiine: K(D)=140+/-19 nM, B(MAX)=2.9+/-0.5 pmol/mg protein; [3H]NBQX: K(D)=111+/-34 nM, B(MAX)=12+/-3 pmol/mg protein). To disclose structural correlates underlying genuine allosteric binding interactions, molecular mechanics calculations of CTZ-induced structural changes were performed with the use of PDB data on extracellular GluR2 binding domain dimeric crystals available by now. Hydrogen-bonding and root mean square (rms) values of amino acid residues recognising receptor agonists showed minor alterations in the agonist binding sites itself. Moreover, CTZ binding did not affect dimeric subunit structures significantly. These findings indicated that the structural changes featuring the non-desensitised state could possibly occur to a further site of the extracellular GluR2 binding domain. The increase of agonist efficacy on allosteric CTZ binding may be interpreted in terms of a mechanism involving AMPA receptor desensitisation sequential to activation.  相似文献   

13.
alpha-Synuclein is a protein normally involved in presynaptic vesicle homeostasis. It participates in the development of Parkinson's disease, in which the nerve cell lesions, Lewy bodies, accumulate alpha-synuclein filaments. The synaptic neurotransmitter release is primarily dependent on Ca(2+)-regulated processes. A microdialysis technique was applied showing that alpha-synuclein binds Ca(2+) with an IC(50) of about 2-300 microm and in a reaction uninhibited by a 50-fold excess of Mg(2+). The Ca(2+)-binding site consists of a novel C-terminally localized acidic 32-amino acid domain also present in the homologue beta-synuclein, as shown by Ca(2+) binding to truncated recombinant and synthetic alpha-synuclein peptides. Ca(2+) binding affects the functional properties of alpha-synuclein. First, the ligand binding of (125)I-labeled bovine microtubule-associated protein 1A is stimulated by Ca(2+) ions in the 1-500 microm range and is dependent on an intact Ca(2+) binding site in alpha-synuclein. Second, the Ca(2+) binding stimulates the proportion of (125)I-alpha-synuclein-containing oligomers. This suggests that Ca(2+) ions may both participate in normal alpha-synuclein functions in the nerve terminal and exercise pathological effects involved in the formation of Lewy bodies.  相似文献   

14.
One of the earliest signs of endometrial preparation for blastocyst implantation is a localized increase in capillary permeability, an event that is essentially inflammatory in character and thought to be a prerequisite for subsequent decidual tissue formation. Platelet-activating factor (PAF), chemically identified as 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine, is a very potent vasoactive compound that recently has been implicated in the implantation process. In the present study, PAF binding sites are characterized in the rabbit uterus. A specific, reversible, saturable, and thermally labile binding of [3H]PAF to uterine membranes has been demonstrated, exhibiting multiple binding sites. The equilibrium dissociation constant (Kd) of the higher affinity binding site (type 1) was 3.6 +/- 0.4 nM (mean +/- SD) with a binding capacity (Bmax) of 3.4 +/- 1.6 pmol/mg protein. The second (lower affinity) binding site (type 2) had an apparent Kd of 114.6 +/- 13.5 nM and a Bmax of 164.3 +/- 17.6 pmol/mg membrane protein, under the conditions of maximal [3H]PAF binding, 25 degrees C, 150 min. Incubations at 4 degrees C for up to 3 h yielded only 30% of the Bmax observed at 25 degrees C. In crude and purified endometrial membrane preparations in which the PAF binding was predominantly located, the affinity of the binding for PAF was significantly higher than for the whole uterus, giving Kds of 1.5 +/- 0.8 and 0.8 +/- 0.5 nM; these latter values were not significantly different. However, the Bmax values of 3.9 +/- 0.9 pmol/mg protein and 376.8 +/- 163.3 fmol/mg protein for the two endometrial preparations, respectively, did differ significantly. Kinetic analysis at 25 degrees C resulted in a calculated Kd of 3.28 +/- 1.14 nM, which did not differ from the value for for the whole uterus at the same temperature, but was greater than for the endometrial preparations. Using 4 nM [3H]PAF to selectively label only the type 1 binding sites, the relative potencies of PAF and its antagonists in displacing [3H]PAF were lyso-PAF greater than CV3988 greater than PAF greater than U66985 greater than A02405 greater than BN52021 greater than U66982. The antagonists SRI 63,441 and L652,731 were ineffective in displacing [3H]PAF at up to 5000-fold molar excess of [3H]PAF. [3H]Lyso-PAF binding at 4 nM was displaceable by PAF. All cations tested, i.e. Ca2+, Mg2+, K+, Na+, and Li+, inhibited [3H]PAF binding. Serine hydrolase inhibitors, diisopropylfluorophosphate (DFP) and phenylmethylsulfonyl fluoride (PMSF), inhibited binding, but bacitracin, leupeptin, and antipain stabilized it.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Kalafatis M  Beck DO 《Biochemistry》2002,41(42):12715-12728
We have recently shown that amino acid region 307-348 of factor Va heavy chain (42 amino acids, N42R) is critical for cofactor activity and may contain a binding site for factor Xa and/or prothrombin [(2001) J. Biol. Chem. 276, 18614-18623]. To ascertain the importance of this region for factor Va cofactor activity, we have synthesized eight overlapping peptides (10 amino acid each) spanning amino acid region 307-351 of the heavy chain of factor Va and tested them for inhibition of prothrombinase activity. The peptides were also tested for the inhibition of the binding of factor Va to membrane-bound active site fluorescent labeled Glu-Gly-Arg human factor Xa ([OG488]-EGR-hXa). Factor Va binds specifically to membrane-bound [OG488]-EGR-hXa (10nM) with half-maximum saturation reached at approximately 6 nM. N42R was also found to interact with [OG488]-EGR-hXa with half-maximal saturation observed at approximately 230 nM peptide. N42R was found to inhibit prothrombinase activity with an IC50 of approximately 250 nM. A nonapeptide containing amino acid region 323-331 of factor Va (AP4') was found to be a potent inhibitor of prothrombinase. Kinetic analyses revealed that AP4' is a noncompetitive inhibitor of prothrombinase with respect to prothrombin, with a K(i) of 5.7 microM. Thus, the peptide interferes with the factor Va-factor Xa interaction. Displacement experiments revealed that the nonapeptide inhibits the direct interaction of factor Va with [OG488]-EGR-hXa (IC50 approximately 7.5 microM). The nonapeptide was also found to bind directly to [OG488]-EGR-hXa and to increase the catalytic efficiency of factor Xa toward prothrombin in the absence of factor Va. In contrast, a peptadecapeptide from N42R encompassing amino acid region 337-351 of factor Va (P15H) had no effect on either prothrombinase activity or the ability of the cofactor to interact with [OG488]-EGR-hXa. Our data demonstrate that amino acid sequence 323-331 of factor Va heavy chain contains a binding site for factor Xa.  相似文献   

16.
The presence of two heterologous alpha subunits and a single benzodiazepine binding site in the GABA(A) receptor implicates the existence of pharmacologically active and inactive alpha subunits. This fact raises the question of whether a particular alpha subtype could predominate performing the benzodiazepine binding site. The hippocampal formation expresses high levels of alpha subunits with different benzodiazepine binding properties (alpha1, alpha2 and alpha5). Thus, we first demonstrated the existence of alpha2-alpha1 (36.3 +/- 5.2% of the alpha2 population) and alpha2-alpha5 (20.2 +/- 2.1%) heterologous receptors. A similar alpha2-alpha1 association was observed in cortex. This association allows the direct comparison of the pharmacological properties of heterologous native GABA(A) receptors containing a common (alpha2) and a different (alpha1 or alpha5) alpha subunit. The alpha2 subunit pharmacologically prevailed over the alpha1 subunit in both cortex and hippocampus (there was an absence of high-affinity binding sites for Cl218,872, zolpidem and [3H]zolpidem). This prevalence was directly probed by zolpidem displacement experiments in alpha2-alpha1 double immunopurified receptors (K(i) = 295 +/- 56 nM and 200 +/- 8 nM in hippocampus and cortex, respectively). On the contrary, the alpha5 subunit pharmacologically prevailed over the alpha2 subunit (low- and high-affinity binding sites for zolpidem and [3H]L-655,708, respectively). This prevalence was probed in alpha2-alpha5 double immunopurified receptors. Zolpidem displayed a single low-affinity binding site (K(i) = 1.73 +/- 0.54 microM). These results demonstrated the existence of a differential dominance between the different alpha subunits performing the benzodiazepine binding sites in the native GABA(A) receptors.  相似文献   

17.
Accumulation of misfolded α-synuclein in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson's disease (PD). To identify ligands having high binding potency toward aggregated α-synuclein, we synthesized a series of phenothiazine derivatives and assessed their binding affinity to recombinant α-synuclein fibrils using a fluorescent thioflavin T competition assay. Among 16 new analogues, the in vitro data suggest that compound 11b has high affinity to α-synuclein fibrils (K(i)=32.10 ± 1.25 nM) and compounds 11d, 16a and16b have moderate affinity to α-synuclein fibrils (K(i)≈50-100 nM). Further optimization of the structure of these analogues may yield compounds with high affinity and selectivity for aggregated α-synuclein.  相似文献   

18.
The influence of beta-amyloid on cholinergic neurotransmission was studied by measuring alterations in nicotinic acetylcholine receptors (nAChRs) in autopsy brain tissue from subjects carrying the Swedish amyloid precursor protein (APP) 670/671 mutation. Significant reductions in numbers of nAChRs were observed in various cortical regions of the Swedish 670/671 APP mutation family subjects (-73 to -87%) as well as in sporadic Alzheimer's disease (AD) cases (-37 to -57%) using the nicotinic agonists [3H]epibatidine and [3H]nicotine, which bind with high affinity to both alpha3 and alpha4 and to alpha4 nAChR subtypes, respectively. Saturation binding studies with [3H]epibatidine revealed two binding sites in the parietal cortex of AD subjects and controls. A significant decrease in Bmax (-82%) for the high-affinity site was observed in APP 670/671 subjects with no change in K(D) compared with controls (0.018 nM APP 670/671; 0.036 nM control). The highest load of neuronal plaques (NPs) was observed in the parietal cortex of APP 670/671 brains, whereas the number of [3H]nicotine binding sites was less impaired compared with other cortical brain regions. Except for a positive significant correlation between the number of [3H]nicotine binding sites and number of NPs in the parietal cortex, no strict correlation was observed between nAChR deficits and the presence of NPs and neurofibrillary tangles, suggesting that these different processes may be closely related but not strictly dependent on each other.  相似文献   

19.
A series of epiboxidine homologues, 2- and 3-isoxazole substituted 8-azabicyclo[3.2.1]octane derivatives was synthesized and evaluated as potential ligands for neuronal nicotinic acetylcholine receptors in [(3)H]cytisine labeled rat brain. The 2beta-isoxazolyl-8-azabicyclo[3.2.1]octane 9b (K(i)=3 nM) was the most potent compound of the series with a binding affinity twice that of nicotine. The 3beta-isoxazolyl-8-azabicyclo[3.2.1]octane 15b (K(i)=148 nM) exhibited moderate affinity while the corresponding 2alpha- and 3alpha-isomers exhibited micromolar binding affinity.  相似文献   

20.
Sun W  Wessinger WD 《Life sciences》2004,75(12):1405-1415
The ability of non-competitive NMDA antagonists and other selected compounds to inhibit [3H]MK-801 binding to the NMDA receptor in brain membranes was evaluated in female, dark Agouti rats. In homologous competition binding studies the average apparent affinity (KD) of [3H]MK-801 for its binding site was 5.5 nM and the binding site density (Bmax) was 1.83 pmol/mg protein. Inhibition of [3H]MK-801 binding by non-competitive NMDA antagonists was best described with a one-site competition model and the average Hill coefficients were -1. A series of eight non-competitive NMDA antagonists inhibited [3H]MK-801 binding with the following rank order of affinity (K(i), nM): MK-801 (5.5) > dexoxadrol (21.5) > or = TCP (24.2) > phencyclidine (100.8) > (+)-SKF 10,047 (357.7) > dextrorphan (405.2) > ketamine (922.2) > dextromethorphan (2913). These inhibition binding constants determined in dark Agouti rat brain membranes were significantly correlated (P = 0.0002; r2 = 0.95) with previously reported values determined in Sprague-Dawley rats [Wong et al., 1988, J. Neurochem. 50, 274-281]. Despite significant differences in metabolic capability between these strains, the central nervous system NMDA receptor ion channel shares similar characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号