首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluticasone propionate is a synthetic corticosteroid drug distinguished by its potent anti-inflammatory action with low systemic side effects in comparison to other corticosteroids making it a potential drug for local buccal delivery. The aim of the present study was to design mucoadhesive buccal film containing fluticasone that is aesthetically acceptable and could maintain local drug release for a sustained period to manage the sign and symptoms of severe erosive mouth lesions. Solvent casting technique was used in film preparation. Different polymeric blends were used either alone or in combination with mucoadhesive polymers, sodium carboxymethyl cellulose (SCMC), or Carbopol 971P at different concentrations. The physicochemical properties, in vitro mucoadhesion time as well as the drug release properties for all prepared formulations were determined. Selected formulations with adequate properties were further examined by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) and subjected to in vivo evaluation. Films containing hydroxypropyl methylcellulose (HPMC)/ethyl cellulose (EC) showed acceptable physicochemical properties, homogenous drug distribution, convenient mucoadhesion time, moderate swelling as well as sustained drug release up to 12 h. The biological performance of these formulations was assessed on healthy human volunteers and compared with a prepared mouthwash which showed enhanced pharmacokinetic parameters for the selected films in comparison to the mouthwash. The results revealed that the optimized formulation containing HPMC/EC and 10% SCMC could successfully achieve sustained drug release for 10 h which is considered promising for local treatment of severe mouth lesions.  相似文献   

2.
N-Stearine-N'-stearyl-L-phenylalanine, a chiral compound, was synthesized and used as a gelator for the gelation of polymerizable solvents, such as ss-hydroxyethyl methacrylate (HEMA), styrene, etc. The scanning electron microscope (SEM) images of the gelator aggregates show fibril-like helices, typical chiral aggregates with diameters of 100-200 nm. The solvent molecules were immobilized by capillary forces in the three-dimensional network structures of the organogels. The HEMA organogels containing crosslinker polyethylene glycol dimethacrylates (PEG200DMA) were subsequently polymerized by in situ UV irradiation. A porous polymerized organogels were obtained after removal of gelator aggregates through ethanol extraction. The chiral separation of D- and L-phenylalanine was carried out by the adsorption of the polymerized organogels. The adsorption efficiency of L-phenylalanine on the polymerized organogels was found to be dependent on the concentration of the gelator and crosslinker.  相似文献   

3.
This study examined the solubility enhancement of 4 cox-2 inhibitors, celecoxib, rofecoxib, meloxicam, and nimesulide, using a series of pure solvents and solvent mixtures. Water, alcohols, glycols, glycerol, and polyethylene glycol 400 (PEG 400) were used as solvents and water-ethanol, glycerol-ethanol, and polyethylene glycol-ethanol were used as mixed-solvent systems. A pH-solubility profile of drugs was obtained in the pH range 7.0 to 10.9 using 0.05M glycine-sodium hydroxide buffer solutions. Lower alcohols, higher glycols, and PEG 400 were found to be good solvents for these drugs. The aqueous solubility of celecoxib, rofecoxib, and nimesulide could be enhanced significantly by using ethanol as the second solvent. Among the mixed-solvent systems, PEG 400-ethanol system had highest solubilization potential. In the case of meloxicam and nimesulide, solubility increased significantly with increase in pH value. Physico-chemical properties of the solvent such as polarity, intermolecular interactions, and the ability of the solvent to form a hydrogen bond with the drug molecules were found to be the major factors involved in the dissolution of drugs by pure solvents. The greater the difference in the polarity of the 2 solvents in a given mixed solvent, the greater was the solubilization power. However, in a given mixed-solvent system, the solubilization power could not be related to the polarity of the drugs. Significance of the solubility data in relation to the development of formulations has also been discussed in this study.  相似文献   

4.
The aim of this work was to investigate the influence of particles on the properties of polymethacrylate films intended for buccal delivery. A solvent casting method was used with Eudragit RS and RL (ERS and ERL, respectively) as film-forming rate-controlling polymers, with caffeine as a water-soluble model drug. The physicochemical properties of the model films for a series of formulations with increasing concentrations of caffeine were determined in terms of morphology, mechanical and mucoadhesive properties, drug content uniformity, and drug release and associated kinetics. Typically regarded as non-mucoadhesive polymers, ERS and mainly ERL, were found to be good mucoadhesives, with ERL01 exhibiting a work of mucoadhesion (WoA) of 118.9 μJ, which was about five to six times higher than that observed for commonly used mucoadhesives such as Carbopol® 974P (C974P, 23.9 μJ) and polycarbophil (PCP, 17.4 μJ). The mucoadhesive force for ERL01 was found to be significantly lower yet comparable to C974P and PCP films (211.1 vs. 329.7 and 301.1 mN, respectively). Inspection of cross-sections of the films indicated that increasing the concentration of caffeine was correlated with the appearance of recrystallized agglomerates. In conclusion, caffeine agglomerates had detrimental effects in terms of mucoadhesion, mechanical properties, uniformity, and drug release at large particle sizes. ERL series of films exhibited very rapid release of caffeine while ERS series showed controlled release. Analysis of release profiles revealed that kinetics changed from a diffusion controlled to a first-order release mechanism.  相似文献   

5.
Loratadine is a class II water-insoluble drug and its dissolution rate and, consequently, absorption are dependent on the gastrointestinal pH. The resulting very high variability in bioavailability and related inter- and intra-subject absorption variations present a major challenge that hinders the realization of an effective and uniform therapy. Among the several techniques that have been used to minimize pH dependency of dissolution rate, liquisolid compacts technique can be suggested as a promising solution. In this study, it was hypothesized that the formulation of loratadine using liquisolid compacts technique may reduce the effect of pH variation on the drug dissolution rate. Solubilities of loratadine in propylene glycol, Tween 80, and polyethylene glycol 400 were first measured and propylene glycol was selected as for producing the highest solubility among the tested solvents. Several liquisolid tablet formulations containing various ratios of drug: propylene glycol (5%, 10%, and 20% w/w) were prepared. The ratio of microcrystalline cellulose (carrier) to silica (coating powder material) was kept constant in all formulations. The dissolution behavior of loratadine from liquisolid compacts was investigated in several buffered media with different pH values (pH 1.2, 2.5, and 5). The results showed that the drug release rates produced by liquisolid compacts were significantly higher and less affected by pH variation compared with conventionally made (direct compression) and commercial (Clarityn) tablets. In conclusion, liquisolid compacts technique may be used as a tool to minimize the effects of pH variation on the dissolution rate of drugs with poor water solubility.  相似文献   

6.
The film forming and coating properties of Glycerol ester of maleic rosin (GMR) and Pentaerythritol ester of maleic rosin (PMR) were investigated. The 2 rosin-based biomaterials were initially characterized in terms of their physicochemical properties, molecular weight (Mw), and glass transition temperature (Tg). Films were produced by solvent evaporation technique on a mercury substrate. Dibutyl sebacate plasticized and nonplasticized films were characterized by mechanical (tensile zzzz strength, percentage elongation, and Young's modulus), water vapor transmission (WVT), and moisture absorption parameters. Plasticization was found to increase film elongation and decrease the Young's modulus, making the films more flexible and thereby reducing the brittleness. Poor rates of WVT and percentage moisture absorption were demonstrated by various film formulations. Diclofenac sodium-layered pellets coated with GMR and PMR film formulations showed sustained drug release for up to 10 hours. The release rate was influenced by the extent of plasticization and coating level. The results obtained in the study demonstrate the utility of novel rosin-based biomaterials for pharmaceutical coating and sustained-release drug delivery systems.  相似文献   

7.
The monosubstituted insulin with poly(ethylene glycol) (PEG, MW about 2200) formed polypseudorotaxanes with alpha- and gamma-cyclodextrins (CyDs), by inserting one PEG chain of the pegylated insulin in the alpha-CyD cavity and two PEG chains in the gamma-CyD cavity. The pegylated insulin/alpha- and gamma-CyD polypseudorotaxanes were less soluble in water and the release rate of the drug decreased in the order of drug alone > the gamma-CyD polypseudorotaxane > the alpha-CyD polypseudorotaxane. The subcutaneous administration of the pegylated insulin/gamma-CyD polypseudorotaxane in rats significantly sustained plasma glucose levels with an enhanced hypoglycemic effect. The results indicated that the pegylated insulin/CyD polypseudorotaxanes can work as a sustained drug release system and the polypseudorotaxane formation may be useful as a sustained drug delivery technique for pegylated proteins and peptides.  相似文献   

8.
In this study, peptide-loaded microparticles were prepared using an aerosol solvent extraction system (ASES) by employing supercritical carbon dioxide as an antisolvent. The effects of the molecular weight of poly(Llactide) (PLLA), poly(ethylene glycol) (PEG), the block length of methoxy poly(ethylene glycol)-b-poly(L-lactide) (mPEG-PLLA), the blending of PLLA and PEG, and the drug-to-polymer feed ratio on the formation of leuprolide acetate (LA)-loaded microparticles and their release characteristics were investigated. Scanning electron microscope observations showed that the LA-loaded polymer particles had a spherical morphology with a smooth surface. The entrapment efficiency of LA in the ASES-processed microparticles was found to be extremely high (about 99%), whereas the initial release rate of the LA-loaded microparticles was very low for PLLA. The release rate of LA was observed to increase as the PEG block length of mPEG-PLLA and/or the drug content in the microparticles increased. When PLLA was blended with PEG, the release rate of LA from the PLLA/PEG microparticles was significantly faster compared with the corresponding mPEG-PLLA copolymer.  相似文献   

9.
With the non-specific toxicity of anticancer drugs to healthy tissues upon systemic administration, formulations capable of enhanced selectivity in delivery to the tumor mass and cells are highly desirable. Based on the diversity of the drug payloads, we have investigated a combinatorial-designed strategy where the nano-sized formulations are tailored based on the physicochemical properties of the drug and the delivery needs. Individually functionalized C(2) to C(12) lipid-, thiol-, and poly(ethylene glycol) (PEG)-modified dextran derivatives were synthesized via 'click' chemistry from O-pentynyl dextran and relevant azides. These functionalized dextrans in combination with anticancer drugs form nanoparticles by self-assembling in aqueous medium having PEG surface functionalization and intermolecular disulfide bonds. Using anticancer drugs with logP values ranging from -0.5 to 3.0, the optimized nanoparticles formulations were evaluated for preliminary cellular delivery and cytotoxic effects in SKOV3 human ovarian adenocarcinoma cells. The results show that with the appropriate selection of lipid-modified dextran, one can effectively tailor the self-assembled nano-formulation for intended therapeutic payload.  相似文献   

10.
The ability of pegylated liposomes (sterically stabilized liposomes-SSL) to localize in solid tumors via the enhanced permeability and retention (EPR) effect, partly depends on their long circulating properties which can be achieved by grafting polyethylene glycol (PEG) to the liposomes’ surface. Alkannin and shikonin (A/S) are naturally occurring hydroxynaphthoquinones with a well-established spectrum of wound healing, antimicrobial, anti-inflammatory, antioxidant, and recently established antitumor activity. The purpose of this work was to prepare and characterize shikonin-loaded pegylated liposomes as a new drug carrier for shikonin, as a continuation of authors’ previous work on conventional shikonin-loaded liposomal formulations. Three new pegylated liposomal formulations of shikonin (DSPC-PEG2000, EPC-PEG2000, and DPPC-PEG2000) were prepared and characterized in terms of physicochemical characteristics, pharmacokinetics, and stability (at 4?°C, for 28?d) and compared with the corresponding conventional ones. Particle size distribution, ζ-potential, entrapment efficiency, and release profile of the entrapped drug were measured. Results indicated the successful incorporation of shikonin into liposomes alongside with their good physicochemical characteristics, high entrapment efficiency, satisfactory in vitro release profile, and good physical stability. The results are considered promising and could be used as a road map for designing further in vivo experiments.  相似文献   

11.
The aim of this work was to prepare organogels of Carbopol 974P NF (C974) in PEG 400 by using a novel technique, high-speed homogenization followed by microwave heating. Triclosan (TCS) was used as a model drug. C974, at concentrations ranging between 2% and 4%, was dispersed in 25 ml of PEG 400, and the dispersion was homogenised for 5 min at 24,000 rpm. The dispersion was either heated at 80°C in water bath under mechanic stirring at 200 rpm or exposed to micro-irradiation (1,200 W/1 h) for 2 min. The formulations prepared with both methods performed a well-structured gel matrix characteristic at 3% and 4% of C974 concentrations. As the concentrations of the polymer increased, the elastic properties also increased. The viscosity profiles indicated a shear-thinning system. DSC data revealed that TCS was dissolved in gel. Skin accumulation ability of TCS had been improved by these novel organogels regardless of the preparation method. TCS was still microbiologically effective after the microwave process was applied. It was determined that microwave heating is a suitable method to obtain C974 organogels. This novel production technique developed might be promising especially in industrial scale when the dramatic reduction in the preparation time and energy were considered.  相似文献   

12.
The current study explains the development of sorbitan monostearate and sesame oil-based organogels for topical drug delivery. The organogels were prepared by dissolving sorbitan monostearate in sesame oil (70°C). Metronidazole was used as a model antimicrobial. The formulations were characterized using phase contrast microscopy, infrared spectroscopy, viscosity, mechanical test, and differential scanning calorimetry. Phase contrast microscopy showed the presence of needle-shaped crystals in the organogel matrix. The length of the crystals increased with the increase in the sorbitan monostearate concentration. XRD studies confirmed the amorphous nature of the organogels. Viscosity study demonstrated shear thinning behavior of the organogels. The viscosity and the mechanical properties of the organogels increased linearly with the increase in the sorbitan monostearate concentration. Stress relaxation study confirmed the viscoelastic nature of the organogels. The organogels were biocompatible. Metronidazole-loaded organogels were examined for their controlled release applications. The release of the drug followed zero-order release kinetics. The drug-loaded organogels showed almost similar antimicrobial activity against Escherichia coli when compared to the commercially available Metrogyl® gel. In gist, it can be proposed that the developed organogels had sufficient properties to be used for controlled delivery of drugs.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-014-0223-7) contains supplementary material, which is available to authorized users.KEY WORDS: organogel, phase contrast microscopy, sesame oil, sorbitan monostearate  相似文献   

13.
The aim of this study was to investigate PEGylated rosin derivatives (PRDs) as microencapsulating materials for sustained drug delivery. PRDs (D1, D2, and D3) composed of a constant weight of rosin and varied amounts of polyethylene glycol (PEG) 400 and maleic anhydride were synthesized in the laboratory. Microparticles were prepared by the O/O solvent evaporation technique using the acetone/paraffin system. Diclofenac sodium (DFS) and diltiazem hydrochloride (DLTZ) were used as model drugs. The effect of the type of PRD, drug, PRD:drug ratio, viscosity of external phase, stirring speed, concentration of magnesium stearate (droplet stabilizer), and method of preparation on particle size, drug loading, and drug release profiles of microparticles was investigated. PRDs could produce discrete and spherical microspheres (with DFS) and microcapsules (with DLTZ). The drug loading value for microparticles was found to be in the range of 37.21% to 87.90%. The microparticle size range was 14 to 36 μm. The particle size and drug loadings of microparticles were substantially affected by the concentration of magnesium stearate and the type of drug, respectively. Most of the formulations could sustain the DFS and DLTZ release for 20 hours. DFS and DLTZ release from PRD microparticles followed Hixson-Crowell and first-order kinetics, respectively. The results suggest that PRDs can be used successfully to prepare discrete and spherical microparticles with DFS and DLTZ for sustained drug delivery. Published: June 22, 2007  相似文献   

14.
The present study was designed to investigate the effect of two plasticizers, i.e., triethyl citrate (TEC) and polyethylene glycol 6000 (PEG 6000) on the in vitro release kinetics of diclofenac sodium from sustained-release pellets. Ammonio methacrylate copolymer type B (Eudragit RS 30 D) is used as the release-retarding polymer. Both plasticizers were used at 10% and 15% (w/w) of Eudragit RS 30 D. Pellets were prepared by powder layering technology and coated with Eudragit RS 30 D by air suspension technique. Thermal properties of drug and drug-loaded beads were studied using differential scanning calorimeter (DSC). DSC thermogram represented the identity of raw materials and exhibited no interaction or complexation between the active and excipients used in the pelletization process. Dissolution study was performed by using USP apparatus 1. No significant difference was observed among the physical properties of the coated pellets of different batches. When dissolution was performed as pure drug, about 8.22% and 90% drug was dissolved at 2 h in 0.1 N HCl and at 30 min in buffer (pH 6.8), respectively. From all formulations, the release of drug in acid media was very negligible (maximum 1.8 ± 0.08% at 2 h) but in buffer only 12% and 30% drug was released at 10 h from coated pellets containing TEC and PEG 6000, respectively, indicating that Eudragit RS 30 D significantly retards the drug release rate and that drug release was varied according to the type and amount of plasticizers used. The amount of TEC in coating formulation significantly effected drug release (p < 0.001), but the effect of PEG 6000 was not significant. Formulations containing PEG 6000 released more drug (98.35 ± 2.35%) than TEC (68.01 ± 1.04%) after 24 h. Different kinetic models like zero order, first order, and Higuchi were used for fitting drug release pattern. Zero order model fitted best for diclofenac release in all formulations. Drug release mechanism was derived with Korsmeyer equation.  相似文献   

15.
The present research work focused on the comparative assessment of porous versus nonporous films in order to develop a suitable buccoadhesive device for the delivery of glibenclamide. Both films were prepared by solvent casting technique using the 32 full factorial design, developing nine formulations (F1–F9). The films were evaluated for ex vivo mucoadhesive force, ex vivo mucoadhesion time, in vitro drug release (using a modified flow-through drug release apparatus), and ex vivo drug permeation. The mucoadhesive force, mucoadhesion time, swelling index, and tensile strength were observed to be directly proportional to the content of HPMC K4M. The optimized porous film (F4) showed an in vitro drug release of 84.47 ± 0.98%, ex vivo mucoadhesive force of 0.24 ± 0.04 N, and ex vivo mucoadhesion time of 539.11 ± 3.05 min, while the nonporous film (NF4) with the same polymer composition showed a release of 62.66 ± 0.87%, mucoadhesive force of 0.20 ± 0.05 N, and mucoadhesive time of 510 ± 2.00 min. The porous film showed significant differences for drug release and mucoadhesion time (p < 0.05) versus the nonporous film. The mechanism of drug release was observed to follow non-Fickian diffusion (0.1 < n < 0.5) for both porous and nonporous films. Ex vivo permeation studies through chicken buccal mucosa indicated improved drug permeation in porous films versus nonporous films. The present investigation established porous films to be a cost-effective buccoadhesive delivery system of glibenclamide.KEY WORDS: buccoadhesive drug delivery, glibenclamide, in vitro release and ex vivo permeation, porous film  相似文献   

16.
Resonance Raman spectroscopy was used to interrogate the heme active site of horseradish peroxidase (HRP) lyophilized in the presence and absence of the lyoprotectant poly(ethylene glycol) (PEG; FW 5000; 0-80% w/w) suspended in acetone, chloroform, or acetonitrile. In aqueous solution, Fe(3+)HRP is characterized by a five-coordinate high-spin (5-c HS) heme system. The structure of the heme-active site of HRP in all solvents is perturbed by co-lyophilization of HRP with PEG. Heme active site structural changes are consistent with coordination of water in the distal axial coordination site of the ferric heme iron and disruption of the hydrogen-bond network when the protein is lyophilized in the presence of PEG (>or=60% w/w) in all of the solvent systems studied. Similar active site structural changes were previously observed for HRP in benzene and attributed to a change in the reaction mechanism for HRP in benzene. (Mabrouk, P. A.; Spiro, T. G. J. Am. Chem. Soc. 1998, 120, 10303-10309.) Thus, PEG is proposed to increase the catalytic activity of HRP in nonaqueous media by locking the heme active site into a structure that functions through an alternative catalytic pathway in nonaqueous media.  相似文献   

17.
Bilayer nicotine mucoadhesive patches were prepared and evaluated to determine the feasibility of the formulation as a nicotine replacement product to aid in smoking cessation. Nicotine patches were prepared using xanthan gum or carbopol 934 as a mucoadhesive polymers and ethyl cellulose as a backing layer. The patches were evaluated for their thickness, weight and content uniformity, swelling behavior, drug–polymers interaction, adhesive properties, and drug release. The physicochemical interactions between nicotine and the polymers were investigated by Fourier transform infrared (FTIR) spectroscopy. Mucoadhesion was assessed using two-arm balance method, and the in vitro release was studied using the Franz cell. FTIR revealed that there was an acid base interaction between nicotine and carbopol as well as nicotine and xanthan. Interestingly, the mucoadhesion and in vitro release studies indicated that this interaction was strong between the drug and carbopol whereas it was weak between the drug and xanthan. Loading nicotine concentration to non-medicated patches showed a significant decrease in the mucoadhesion strength of carbopol patches and no significant effect on the mucoadhesion strength of xanthan patches. In vitro release studies of the xanthan patches showed a reasonable fast initial release profile followed by controlled drug release over a 10-h period.  相似文献   

18.
This study reports on the preparation of chitosan (CS)/polyethylene glycol (PEG) hydrogel beads using sodium diclofenac (DFNa) as a model drug. Following the optimization of the polymer to drug ratio, the chitosan beads were modified by ionic crosslinking with sodium tripolyphosphate (TPP). The CS/PEG/DFNa beads obtained from a (w/w/w) ratio of 1/0.5/0.5 with crosslinking in 10% (w/v) TPP at pH 6.0 for 30 min yielded excellent DFNa encapsulation levels with over 90% loading efficiency. The dissolution profile of DFNa from CS/PEG/DFNa beads demonstrated that this formulation was able to maintain a prolonged drug release for approximately 8 h. Among the formulations tested, the CS/PEG/DFNa (1/0.5/1 (w/w/w)) beads crosslinked with a combination of TPP (10% (w/v) for 30 min) and glutaraldehyde (GD) (5% (w/v)) were able to provide minimal DFNa release in the gastric and duodenal simulated fluids (pH 1.2 and 6.8, respectively) allowing for a principally gradual drug release over 24 h in the intestinal (jejunum and ileum) simulated fluid (pH 7.4). Thus, overall the CS/PEG beads crosslinked with TPP and GD look to be a promising and novel alternative gastrointestinal drug release system.  相似文献   

19.
Considering the advantageous for the rectal administration of non-steroidal anti-inflammatory drugs, the objective of this study was to formulate and evaluate rectal mucoadhesive hydrogels loaded with diclofenac-sodium chitosan (DFS-CS) microspheres. Hydroxypropyl methylcellulose (HPMC; 5%, 6%, and 7% w/w) and Carbopol 934 (1% w/w) hydrogels containing DFS-CS microspheres equivalent to 1% w/w active drug were prepared. The physicochemical characterization revealed that all hydrogels had a suitable pH for rectal application (6.5–7.4). The consistency of HPMC hydrogels showed direct proportionality to the concentration of the gelling agent, while carbopol 934 gel showed its difficulty for rectal administration. Farrow’s constant for all hydrogels were greater than one indicating pseudoplastic flow. In vitro drug release from the mucoadhesive hydrogel formulations showed a controlled drug release pattern, reaching 34.6–39.7% after 6 h. The kinetic analysis of the release data revealed that zero-order was the prominent release mechanism. The mucoadhesion time of 7% w/w HPMC hydrogel was 330 min, allowing the loaded microspheres to be attached to the surface of rectal mucosa. Histopathological examination demonstrated the lowest irritant response to the hydrogel loaded with DFS-CS microspheres in response to other forms of the drug.  相似文献   

20.
The objectives of this study were to prepare push–pull osmotic tablets (PPOT) of felodipine using an interpolymer complex of chitosan (CS) and poly(acrylic acid) (PAA) as an osmopolymer, and to study the mechanisms of drug release from these tablets. The interpolymer complexes were prepared with different weight ratios of CS to PAA. Preparation of PPOT involved the fabrication of bilayered tablets with the drug layer, containing felodipine, polyethylene oxide, and the polymeric expansion layer, containing the CS–PAA complex. The effects of polymer ratios, type of plasticizers, and compression forces on release characteristics were investigated. It was found that drug release from PPOT exhibited zero-order kinetics and could be prolonged up to 12 or 24 h depending on the plasticizer used. PPOT using dibutyl sebacate showed a longer lag time and slower drug release than that using polyethylene glycol 400. In the case of polyethylene glycol 400, an increase in the CS proportion resulted in an increase in the drug release rate. The compression force had no effect on drug release from PPOT. Drug release was controlled by two consecutive mechanisms: an osmotic pump effect resulting in the extrusion of the drug layer from the tablet and subsequent erosion and dissolution of the extruded drug layer in the dissolution medium. The mathematical model (zero-order) related to extrusion and erosion rates for describing the mechanism of drug release showed a good correlation between predicted and observed values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号