首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autoimmunity as a result of escape from RNA surveillance   总被引:3,自引:0,他引:3  
In previous studies, we detected a frame shift mutation in the gene encoding the autoantigen La of a patient with systemic lupus erythematosus. The mutant La mRNA contains a premature termination codon. mRNAs that prematurely terminate translation should be eliminated by RNA quality control mechanisms. As we find Abs specific for the mutant La form in approximately 30% of sera from anti-La-positive patients, we expected that mutant La mRNAs circumvent RNA control and the expression of mutant La protein could become harmful. Indeed, real-time PCR, immunostaining, and immunoblotting data of mice transgenic for the mutant La form show that mutant La mRNAs are not repressed in these animals and are translated to mutant La protein. In addition to the mutant La protein, we detected a minor portion of native human La in the mutant La-transgenic mice. Therefore, ribosomal frame shifting may allow the mutant La mRNA to escape from RNA control. Interestingly, expression of the mutant La mRNA results in a lupus-like disease in the experimental mice. Consequently, escape of mutant La mRNA from RNA control can have two effects: it 1) results in the expression of an immunogenic (neo)epitope, and 2) predisposes to autoimmunity.  相似文献   

2.
3.
福氏2a志贺氏菌2457T HtpG蛋白诱导小鼠炎性反应   总被引:1,自引:0,他引:1  
[目的]构建福氏2a志贺氏菌2457T株的htpG缺失突变株和回复株,对HtpG蛋白的功能进行初步研究.[方法]采用X-Red重组系统对htpG基因进行缺失突变,构建了福氏2a志贺氏菌2457T株的htpG缺失突变株,并利用低拷贝质粒构建了htpG突变株的回复株.在此基础上,对野生株、突变株和回复株的生长曲线、生化反应、豚鼠角膜试验进行了比较分析,并考察了野生株、突变株和回复株腹腔注射引起小鼠炎症反应的强弱.[结果]HtpG蛋白功能与福氏志贺氏菌的基本生化代谢无关,也不影响细菌穿透上皮细胞的能力,但腹腔注射后能够引起小鼠强烈的炎症反应.[结论]HtpG蛋白功能可能与细菌的免疫致病性相关.  相似文献   

4.
从已构建的水稻(Oryza sativa L.)T-DNA插入突变体中鉴定获得一株穗部额外发育出叶片的突变体,并根据该叶片的形态学位置将其命名为剑叶突变体(J4)。研究表明这种额外发育的叶片呈现明显的缺陷,主要表现为叶片短小、表皮细胞变小、叶片中维管束数目减少等。进一步通过TAIL-PCR和inverse-PCR的方法克隆该突变体中T-DNA插入位置的旁邻序列,从而准确地将T-DNA定位到2号染色体上。基因表达分析显示,T-DNA插入位置附近的AK100376基因在J4突变体以及表型类似突变体neck leaf 1中的表达均被明显下调,可初步将其确定为与剑叶突变体表型相关的候选基因。  相似文献   

5.
Characterization of a glycerol kinase mutant of Aspergillus niger   总被引:3,自引:0,他引:3  
A glycerol-kinase-deficient mutant of Aspergillus niger was isolated. Genetic analysis revealed that the mutation is located on linkage group VI. The phenotype of this mutant differed from that of a glycerol kinase mutant of Aspergillus nidulans in its ability to utilize dihydroxyacetone (DHA). The weak growth on glycerol of the A. niger glycerol kinase mutant showed that glycerol phosphorylation is an important step in glycerol catabolism. The mutant could still grow normally on DHA because of the presence of a DHA kinase. This enzyme, probably in combination with an NAD(+)-dependent glycerol dehydrogenase, present only in the mutant, is responsible for the weak growth of the mutant on glycerol. Enzymic analysis of both the mutant and the parental strain showed that at least three different glycerol dehydrogenases were formed under different physiological conditions: the NAD(+)-dependent enzyme described above, a constitutive NADP(+)-dependent enzyme and a D-glyceraldehyde-specific enzyme induced on D-galacturonate. The glycerol kinase mutant showed impaired growth on D-galacturonate.  相似文献   

6.
7.
A LPS-resistant mutant, W3SF-1, was isolated from a murine macrophage-like cell line, WEHI-3. The W3SF-1 mutant did not produce a significant amount of nitric oxide (NO) or TNF-alpha even with high concentrations of LPS in the presence or absence of FCS, whereas the parental WEHI-3 cells produced them in response to LPS. The parental cells expressed a significant level of TNF-alpha mRNA after LPS stimulation, whereas the mutant cells did not. This defective response of the mutant cells to LPS was neither dependent on the concentration or chemical structure of LPS, nor on the time of LPS treatment. The mutant cells also showed a defective response to zymosan, suggesting that the defect in the mutant cells is common to LPS and zymosan in the signal transduction pathways. The parental and mutant cells showed similar levels of Mac1, F4/80 and CD14, suggesting that these surface markers of macrophages are not linked directly to the defective responses of the mutant to LPS. The treatment of mutant cells with IFN-gamma did not restore the defect of NO or TNF-alpha production on LPS treatment. Binding experiments with 125I-labelled LPS showed a similar binding affinity for LPS in the parental and the mutant cells. These results suggest that the defect in the W3SF-1 mutant cells may not reside in the LPS binding but rather in the early step of signal transduction pathways in the cells after LPS binding.  相似文献   

8.
Mutant genes, reduced culm number 1 (rcn1) and bunketsuwaito tillering dwarf (d3), affect tiller number in rice (Oryza sativa L.) in opposite directions. The d3 mutant was reported to increase tiller number and reduce plant stature. Our objective was to compare the phenotype of the d3rcn1 double mutant with each single mutant and parental rice cultivar "Shiokari" and to clarify whether the Rcn1 gene interacted with the D3 gene. We recovered a new rcn1 mutant from Shiokari and developed d3rcn1 double mutant with Shiokari genetic background. A new rcn1 mutant, designated as "S-97-61" exhibited a reduction in tiller number and plant stature to about the same level as the previously reported original rcn1 mutant. Three near-isogenic lines, rcn1 mutant, d3 mutant, and d3rcn1 double mutant, were grown together with the parental Shiokari. The reduction in tillering by the rcn1 mutation was independent of the d3 genotype, and tillering number of d3rcn1 double mutant was between those of the d3 and rcn1 mutants. These results demonstrated that the Rcn1 gene was not involved in the D3-associated pathway in tillering control.  相似文献   

9.
Sweet wheat     
The major components of storage starch are amylose and amylopectin, and in wheat, both an amylose-free mutant lacking granule-bound starch synthase I and a high-amylose mutant lacking starch synthase IIa have been produced recently. Here, we report the production of an amylose-free/ high-amylose double mutant. This double mutant has kernel and carbohydrate characteristics that are remarkably different than those of either single mutant, including a dramatically shrunken seed shape. Surprisingly, the double mutant has maltose and sucrose levels that are high enough to make it worthy of being called "sweet wheat".  相似文献   

10.
Histone deacetylase 6 (HDAC6) is a tubulin deacetylase that regulates protein aggregation and turnover. Mutations in Cu/Zn superoxide dismutase (SOD1) linked to familial amyotrophic lateral sclerosis (ALS) make the mutant protein prone to aggregation. However, the role of HDAC6 in mutant SOD1 aggregation and the ALS etiology is unclear. Here we report that HDAC6 knockdown increased mutant SOD1 aggregation in cultured cells. Different from its known role in mediating the degradation of poly-ubiquitinated proteins, HDAC6 selectively interacted with mutant SOD1 via two motifs similar to the SOD1 mutant interaction region (SMIR) that we identified previously in p62/sequestosome 1. Expression of the aggregation-prone mutant SOD1 increased α-tubulin acetylation, and the acetylation-mimicking K40Q α-tubulin mutant promoted mutant SOD1 aggregation. Our results suggest that ALS-linked mutant SOD1 can modulate HDAC6 activity and increase tubulin acetylation, which, in turn, facilitates the microtubule- and retrograde transport-dependent mutant SOD1 aggregation. HDAC6 impairment might be a common feature in various subtypes of ALS.  相似文献   

11.
p53 is frequently mutated in tumor cells, and mutant p53 is often highly expressed due to its increased half-life. Thus, targeting mutant p53 for degradation might be explored as a therapeutic strategy to manage tumors that are addicted to mutant p53 for survival. Arsenic trioxide, a drug for patients with acute promyelocytic leukemia, is found to target and degrade a class of proteins with high levels of cysteine residues and vicinal thiol groups, such as promyelocytic leukemia protein (PML) and PML-retinoic acid receptor α fusion protein. Interestingly, wild type p53 is accumulated in cells treated with arsenic compounds, presumably due to arsenic-induced oxidative stresses. In this study, we found that wild type p53 is induced by arsenic trioxide in tumor cells, consistent with published studies. In contrast, we found that arsenic compounds degrade both endogenous and ectopically expressed mutant p53 in time- and dose-dependent manners. We also found that arsenic trioxide decreases the stability of mutant p53 protein through a proteasomal pathway, and blockage of mutant p53 nuclear export can alleviate the arsenic-induced mutant p53 degradation. Furthermore, we found that knockdown of endogenous mutant p53 sensitizes, whereas ectopic expression of mutant p53 desensitizes, tumor cells to arsenic treatment. Taken together, we found that mutant p53 is a target of arsenic compounds, which provides an insight into exploring arsenic compound-based therapy for tumors harboring a mutant p53.  相似文献   

12.
Stable and unstable mutant lysozymes in long helices B and C were constructed to evaluate the effect of the helices on amyloid fibril formation at pH 2. Stable mutant N27D and unstable mutant K33D in the B-helix did not change in amyloid fibril formation. In contrast, stable mutant N93D and unstable mutant K97D in the C-helix showed big differences in behavior as to amyloid fibril formation. Stable mutant N93D showed a longer lag phase of aggregation and suppressed the amyloid fibril formation, whereas unstable mutant K97D showed a shorter lag phase of aggregation and accelerated amyloid fibril formation. These results suggest that the long C-helix is involved mainly in the alpha-helix to beta-sheet transition during amyloid formation of lysozyme.  相似文献   

13.
A barley mutant, 194, was observed to exhibit a leaf spot phenotype over the whole course of its growing period. In this study, the phenotype and antioxidant competence were studied in the lesion mimic mutant 194. Plant height was slightly higher in mutant 194 than in the wild type (WT). In addition, leaf spot per plant in mutant 194 was significantly higher than in WT. Antioxidant competence, as indicated by reactive oxygen species (ROS) accumulation, antioxidant enzyme activity, and the expression of antioxidant enzyme-encoding genes was also assessed in mutant 194. Compared to the WT, mutant 194 displayed a relatively higher accumulation of ROS, accompanied by lower activities of some antioxidant enzymes and downregulation of antioxidant enzyme-encoding genes. This demonstrated reduced antioxidant competence in mutant 194. The results suggested that this lower antioxidant competence of mutant 194 could lead to the accumulation of excessive ROS. This excess of ROS could induce programmed cell death and has the potential to promote disease resistance in mutant 194.  相似文献   

14.
Mutations in superoxide dismutase 1 (SOD1, EC 1.15.1.1) cause familial amyotrophic lateral sclerosis; with aggregated forms of mutant protein accumulating in spinal cord tissues of transgenic mouse models and human patients. Mice over-expressing wild-type human SOD1 (WT hSOD1) do not develop amyotrophic lateral sclerosis-like disease, but co-expression of WT enzyme at high levels with mutant SOD1 accelerates the onset of motor neuron disease compared with mice expressing mutant hSOD1 alone. Spinal cords of mice expressing both proteins contain aggregated forms of mutant protein and, in some cases, evidence of co-aggregation of WT hSOD1 enzyme. In the present study, we used a cell culture model of mutant SOD1 aggregation to examine how the presence of WT SOD1 affects mutant protein aggregation, finding that co-expression of WT SOD1, hSOD1 or mouse SOD1, delayed the formation of mutant hSOD1 aggregates; in essence appearing to slow the aggregation rate. In some combinations of WT and mutant hSOD1 co-expression, the aggregates that did eventually form appeared to contain WT hSOD1 protein. However, WT mouse SOD1 did not co-aggregate with mutant hSOD1 despite displaying a similar ability to slow mutant hSOD1 aggregation. Together, these studies indicate that WT SOD1 (human or mouse), when expressed at levels equivalent to the mutant protein, modulates the aggregation of mutant SOD1.  相似文献   

15.
The role of the flagellum and chemotactic motility of Vibrio anguillarum for phagocytosis by and intracellular survival in fish macrophages was determined using a wild-type strain, a mutant without the flagellum, a mutant with a truncated flagellum and a non-chemotactic mutant. For all strains, the numbers of intracellular bacteria were relatively low and fell steadily during the observation period. The presence of a flagellum did not influence the uptake by the macrophages, but the smooth swimming phenotype of a non-chemotactic mutant increased its intracellular presence. We suggest that this is due to an increased collision between the mutant and the macrophage, due to a higher average speed of the non-chemotactic mutant.  相似文献   

16.
Guan Z-J  S-B Lu  Y-L Huo  B Guo  Z-P Guan  Y-H Wei 《Phyton》2015,84(2):351-357
Leaf explants of the HBsAg-transgenic cherry tomato (Solanum lycopersicum) mutant were cultured on Murashige and Skoog (MS) basal medium, supplemented with 1.0 mg/L 6-BA and 0.05 mg/L IAA for callus induction, to clarify the physiological and biochemical characteristics of morphogenesis development. Therefore, the physiological and biochemical changes during the development of organogenic shoots and somatic embryos in the mutant were studied. Superoxide dismutase (SOD) activities of the mutant had only one peak value on the 21st day. Peroxidase (POD) activities of the mutant declined less sharply since the explants were cultured. IAA oxidase activity of the mutant increased steadily until 42 days from culturing and then decreased sharply. Malondialdehyde (MDA) of the mutant showed a significant decreasing trend after 21 days from culturing. Growth rate of the mutant was at times lower than that of the control during its callus differentiation, and the soluble protein content of the mutant callus decreased from explant cultivation until the 28th day of culture. The mutant had greater values of chlorophyll a, carotenoid and Chlorophyll contents than the control after 14 days of culturing, and Chlorophyll b content of the mutant showed a declining trend. The electrical conductivity trend of the mutant was consistent with that in the control. It indicated that in terms of the organogenesis or somatic embryogenesis pattern, protein synthesis and catabolism were very active, and a number of antioxidant enzyme activities were consistent in the early development stages of the two regeneration systems. These findings were useful for the regeneration of the mutant.  相似文献   

17.
18.
Stability-enhanced mutants, H44, 11-94, 5A2-84, and F8, of L-threonine aldolase (L-TA) from Streptomyces coelicolor A3(2) (SCO1085) were isolated by an error-prone PCR followed by a high-throughput screening. Each of these mutant, had a single amino acid substitution: H177Y in the H44 mutant, A169T in the 11-94 mutant, D104N in the 5A2-84 mutant and Fl81 in the F8 mutant. The residual L-TA activity of the wild-type L-TA after a heat treatment for 20 min at 60 degrees C was only 10.6%. However, those in the stability-enhanced mutants were 85.7% for the H44 mutant, 58.6% for the F8 mutant, 62.1% for the 5A2-84 mutant, and 67.6% for the 11-94 mutant. Although the half-life of the wild-type L-TA at 63 degrees C was 1.3 min, those of the mutant L-TAs were longer: 14.6 min for the H44 mutant, 3.7 min for the 11-94 mutant, 5.8 min for the 5A2-84 mutant, and 5.0 min for the F8 mutant. The specific activity did not change in most of the mutants, but it was decreased by 45% in the case of mutant F8. When the aldol condensation of glycine and 3,4-dihydroxybenzaldehyde was studied by using whole cells of Escherichia coli containing the wild-type L-TA gene, L-threo-3,4-dihydroxyphenylserine (L.-threo-DOPS) was successfully synthesized with a yield of 2.0 mg/ml after 20 repeated batch reactions for 100 h. However, the L-threo-DOPS synthesizing activity of the enzyme decreased with increased cycles of the batch reactions. Compared with the wild-type L-TA, H44 L-TA kept its L-threo-DOPS synthesizing activity almost constant during the 20 repeated batch reactions for 100 h, yielding 4.0 mg/ml of L-threo-DOPS. This result showed that H44 L-TA is more effective than the wild-type L-TA for the mass production of L-threo-DOPS.  相似文献   

19.
A new mutant that has neither male nor female secondary sex characters was found in the medaka, Oryzias latipes. Both XX and XY mature mutants had gonads with many spermatozoa, but spawning did not occur when the mutants were paired with normal males or normal females. F1 progeny were successfully obtained by artificial insemination using unfertilized eggs from wild-type females and spermatozoa of the XY mutant. The mutant phenotype did not occur in the F1 progeny from this cross. Incrossing among the F1 progeny produced 17 mutant offspring out of 68 progeny (25%), demonstrating that the mutant phenotype is caused by a single recessive mutation. This mutant was named scl (sex character-less). Because papillary processes, a male secondary sex character, were induced in the XY mutants by androgen administration, it seems that the androgen receptor is functioning normally. We found a loss-of-function type mutation in the P450c17 gene of the mutant; this gene encodes a steroidogenic enzyme required for the production of estrogen and androgen. The scl phenotype was completely linked to the mutant genotype of P450c17, strongly suggesting that mutation at the P450c17 locus is responsible for the scl mutant phenotype.  相似文献   

20.
The structural gene encoding a mutant Escherichia coli phosphoenolpyruvate carboxylase deficient in regulation by fructose 1,6-bisphosphate (Fru-P2) was isolated from total E. coli PpcI genomic DNA. This mutant gene is located on a 4.4-kilobase SalI DNA fragment which, when ligated to SalI-digested pBR322, resulted in the generation of the plasmid pFS16. Detailed restriction mapping of the wild-type and mutant genes for phosphoenolpyruvate carboxylase revealed the presence of a ClaI restriction site at position 563 of the mutant gene only. This ClaI site is located on a 289 PvuII/DdeI fragment which codes for amino acid residues 174-270 of the phosphoenolpyruvate carboxylase enzyme. When this portion of the mutant gene is present in chimeras of the wild-type and mutant genes, the phosphoenolpyruvate carboxylase produced cannot be activated by Fru-P2. The mutation resulting in the generation of the ClaI site in the mutant gene has also resulted in an amino acid substitution at residue 188; threonine in the wild-type enzyme has been replaced by isoleucine in the mutant enzyme. Comparison of the nucleotide sequence of this 289-base pair PvuII/DdeI region of the mutant gene with its homologous region in the wild-type gene verified that this mutation, which resulted in the generation of the ClaI site, is the only change that has occurred on this 289-base pair fragment of the mutant gene, and thus the amino acid replacement of threonine by isoleucine is the only change that could be linked to the inability of the mutant enzyme to be activated by Fru-P2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号