首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, impedance measurement of electrolyte-insulator-semiconductor (EIS) structure with high spatial resolution was proposed to monitor cell adhesion. The light addressing ability of this work overcomes the geometrical restrict of cell culture on conventional impedance detection devices such as interdigitated electrode (IDE) and electric cell-substrate impedance sensing (ECIS). Instead of studying cells on predetermined sites of IDE and ECIS, cells cultured anywhere on EIS sensor surface can be addressed and selected as target cells. Principle and primary models for high resolution impedance detection were described and tested by experiments. The EIS sensor was investigated in terms of its intrinsic characteristics, like impedance behavior, voltage characteristic, frequency dependency and photovoltaic effect. Optimized working condition was studied for cell experiments. Cell adhesion under treatment of 0.1% Triton X-100 was monitored using rat kidney cells as the source. Results showed good sensitivity (10% change of impedance) and resolution (40 μm) for cell adhesion impedance detection and suggested this work should be suitable for monitoring cell impedance. Further improvements on sensitivity, spatial resolution were discussed as well as the further applications for single cell monitoring and cell adhesion imaging.  相似文献   

2.
Cellular interaction with and adhesion on different biological surfaces is a dynamic and integrated process requiring the participation of specialized cell surface receptors, structural proteins, signaling proteins, and the cellular cytoskeleton. In this report, the authors describe a label-free and real-time method for measuring and monitoring cell adhesion on special microplates integrated with electronic cell sensor arrays. These plates were used in conjunction with the real-time cell electronic sensing (RT-CES) system to dynamically and quantitatively monitor the specific interaction of fibroblasts with extracellular matrix (ECM) proteins and compared with standard adhesion techniques. Cell adhesion on ECM-coated cell sensor arrays is dependent on the concentration of ECM proteins coated and is inhibited by agents that disrupt the interaction of ECM with cell surface receptors. Furthermore, the authors demonstrate that the integrity of the actin cytoskeleton is required for productive cell adhesion and spreading on ECM-coated microelectronic sensors. Confirming earlier results, it is shown that interfering with Src expression or activity, via siRNA or small molecule, results in the disruption of adhesion and spreading of Bx PC3 cells. The results indicate that the RT-CES system offers a convenient and quantitative means of assessing the kinetics of cell adhesion in a high-throughput manner.  相似文献   

3.
Cortactin is an F-actin binding protein that stabilizes F-actin networks and promotes actin polymerization by activating the Arp2/3 complex. Overexpression of cortactin, as observed in several human cancers, stimulates cell migration, invasion, and experimental metastasis; however, the underlying mechanism is not understood. To investigate the importance of cortactin in cell migration, we downregulated its expression using RNA interference (RNAi). Stable downregulation of cortactin in HBL100 breast epithelial cells resulted in (i) decreased cell migration and invasion, (ii) enhanced cell-cell adhesion, and (iii) accelerated cell spreading. These phenotypic changes were reversed by expression of RNAi-resistant mouse cortactin. Cortactin colocalized with cadherin and beta-catenin in adherens junctions, consistent with its role in intercellular adhesion. Remarkably, cortactin deficiency did not affect lamellipodia formation. Instead, downregulation of cortactin in human squamous carcinoma cells that overexpress cortactin changed the cytoskeletal organization. We conclude that increased levels of cortactin, as found in human carcinomas, promote cell migration and invasion by reducing cell spreading and intercellular adhesive strength.  相似文献   

4.
The biomechanical behavior of an adherent cell is intimately dependent on its cytoskeleton structure. Several models have been proposed to study this structure taking into account its existing internal forces. However, the structural and geometrical complexities of the cytoskeleton's filamentous networks lead to difficulties for determining a biologically realistic architecture. The objective of this paper is to present a mechanical model, combined with a numerical method, devoted to the form-finding of the cytoskeleton structure (shape and internal forces) when a cell adheres on a substrate. The cell is modeled as a granular medium, using rigid spheres (grains) corresponding to intracellular cross-linking proteins and distant mechanical interactions to reproduce the cytoskeleton filament internal forces. At the initial state (i.e., before adhesion), these interactions are tacit. The adhesion phenomenon is then simulated by considering microtubules growing from the centrosome towards transmembrane integrin-like receptors. The simulated cell shape changes in this process and results in a mechanically equilibrated structure with traction and compression forces, in interaction with the substrate reactions. This leads to a compressive microtubule network and a corresponding tensile actin-filament network. The results provide coherent shape and forces information for developing a mechanical model of the cytoskeleton structure, which can be exploitable in future biomechanical studies of adherent cells.  相似文献   

5.
Focal adhesions (FAs) play a key role in cell attachment, and their timely disassembly is required for cell motility. Both microtubule-dependent targeting and recruitment of clathrin are critical for FA disassembly. Here we identify nonvisual arrestins as molecular links between microtubules and clathrin. Cells lacking both nonvisual arrestins showed excessive spreading on fibronectin and poly-d-lysine, increased adhesion, and reduced motility. The absence of arrestins greatly increases the size and lifespan of FAs, indicating that arrestins are necessary for rapid FA turnover. In nocodazole washout assays, FAs in arrestin-deficient cells were unresponsive to disassociation or regrowth of microtubules, suggesting that arrestins are necessary for microtubule targeting–dependent FA disassembly. Clathrin exhibited decreased dynamics near FA in arrestin-deficient cells. In contrast to wild-type arrestins, mutants deficient in clathrin binding did not rescue the phenotype. Collectively the data indicate that arrestins are key regulators of FA disassembly linking microtubules and clathrin.  相似文献   

6.
《The Journal of cell biology》1988,107(5):1863-1871
The molecular mechanisms underlying cell attachment and subsequent cell spreading on laminin are shown to be distinct form one another. Cell spreading is dependent upon the binding of cell surface galactosyltransferase (GalTase) to laminin oligosaccharides, while initial cell attachment to laminin occurs independent of GalTase activity. Anti-GalTase IgG, as well as the GalTase modifier protein, alpha-lactalbumin, both block GalTase activity and inhibited B16-F10 melanoma cell spreading on laminin, but not initial attachment. On the other hand, the addition of UDP galactose, which increases the catalytic turnover of GalTase, slightly increased cell spreading. None of these reagents had any effect on cell spreading on fibronectin. When GalTase substrates within laminin were either blocked by affinity- purified GalTase or eliminated by prior galactosylation, cell attachment appeared normal, but subsequent cell spreading was totally inhibited. The laminin substrate for GalTase was identified as N-linked oligosaccharides primarily on the A chain, and to a lesser extent on B chains. That N-linked oligosaccharides are necessary for cell spreading was shown by the inability of cells to spread on laminin surfaces pretreated with N-glycanase, even though cell attachment was normal. Cell surface GalTase was distinguished from other reported laminin binding proteins, most notably the 68-kD receptor, since they were differentially eluted from laminin affinity columns. These data show that surface GalTase does not participate during initial cell adhesion to laminin, but mediates subsequent cell spreading by binding to its appropriate N-linked oligosaccharide substrate. These results also emphasize that some of laminin's biological properties can be attributed to its oligosaccharide residues.  相似文献   

7.
To investigate the function of calpain in T cells, we sought to determine the role of this protease in cellular events mediated by beta1 integrins. T cell receptor cross-linked or phorbol ester-stimulated T cells binding to immobilized fibronectin induce the translocation of calpain to the cytoskeletal/membrane fraction of these cells. Such translocation of calpain is associated with proteolytic modification of protein tyrosine phosphatase 1B, increased cellular adhesion, and dramatic alterations in cellular morphology. However, affinity-related increases in T cell adhesion induced by the anti-beta1 integrin antibody 8A2 occur in a calpain-independent manner and in the absence of morphological shape changes. Furthermore, calpain undergoes activation in response to either alpha4beta1 or alpha5beta1 integrin binding to fibronectin in appropriately stimulated T cells, and calpain II as well as protein tyrosine phosphatase 1B accumulates at sites of focal contact formation. Inhibition of calpain activity not only inhibits the proteolytic modification of protein tyrosine phosphatase 1B, but also decreases the ability of T cells to adhere to and spread on immobilized fibronectin. Thus, we describe a potential regulatory role for calpain in beta1 integrin-mediated signaling events associated with T cell adhesion and cell spreading on fibronectin.  相似文献   

8.
A PDMS-glass based micro-device was designed and fabricated with 12 coplanar impedance sensors integrated for electrical cell-substrate impedance sensing (ECIS). The sensitivity and frequency characteristics of the sensors were investigated both theoretically (equivalent circuit model) and experimentally for the commonly used micro-electrode dimension scale (20-80 microm). The experimental results matched well with the theoretical model analysis and revealed that, within this micro-electrode dimension scale, as the electrode width decreased or as the total electrode length decreased the sensitivity of sensor increased over the whole sensing frequency range, whilst electrode to electrode distance had no influence on sensitivity. Through our frequency characteristics analysis, the whole frequency range could be divided into four parts. New functions describing the dominant components in each frequency range were defined and validated experimentally, and could be used to explain the phenomenon of an ECIS sensing frequency window. The contribution to the impedance measurement of cells growing on the edges of the electrodes was determined for the first time. Finally, novel proposals for ECIS sensor design and ECIS measurements were presented.  相似文献   

9.
Gangliosides are implicated in regulating cell adhesion and migration on fibronectin by binding with the alpha(5) subunit of alpha(5)beta(1) integrin. However, the effects of gangliosides on cell spreading and related signaling pathways are unknown. Increases in gangliosides GT1b and GD3 inhibited spreading on fibronectin, concurrent with inhibition of Src and focal adhesion kinase. Although antibody blockade of GT1b or GD3 function and gene-modulated ganglioside depletion stimulated spreading and activated Src and focal adhesion kinase, the augmented spreading by disruption of GT1b function, but not by disruption of GD3 function, was inhibited by blockade of Src and focal adhesion kinase activation. In contrast, inhibitors of protein kinase C prevented the stimulation of spreading by GD3 functional inhibition, but not by GT1b functional blockade. Modulation of either GT1b or GD3 content affected phosphoinositol 3-kinase activation, and inhibition of this activation reversed the stimulation of cell spreading by anti-GD3 antibody, anti-GT1b antibody, and ganglioside depletion, suggesting that phosphoinositol 3-kinase is an intermediate in both the FAK/Src and protein kinase C pathways that lead to cell spreading. These studies demonstrate that epithelial cell ganglioside GT1b modulates cell spreading through alpha(5)beta(1)/FAK and phosphoinositol 3-kinase signaling, whereas GD3-modulated spreading appears to involve phosphoinositol 3-kinase-dependent protein kinase C signaling.  相似文献   

10.
Interaction of cells with the extracellular matrix (ECM) plays an important role in the regulation of cell behavior. Formation of adhesive contacts leads to transduction of signals into the cell and results in altered gene expression and modulation of the cellular phenotype. Specific adhesive interactions of the fibronectin and vitronectin receptors with their ligands in the matrix modulates expression of ECM-degrading metalloproteases. These proteases are involved in the acquisition of the invasive phenotype by a number of cell types. The activity of matrix metalloproteases (MMPs) is reduced by endogenous inhibitors referred to as tissue inhibitors of metalloproteases (TIMPs). Alterations in the balance between the activity of MMPs and TIMPs alters cellular invasion through effects on matrix degradation. In this study we demonstrate that inhibition of endogenous gelatinase A activity in A2058 human melanoma cells results in enhanced cellular adhesion. To further explore this phenomenon, we have used retroviral infection vectors to control the amount of the MMP inhibitor TIMP-2 in human melanoma A2058 cells. Altering the production of TIMP-2 modulates not only proteolysis of the extracellular matrix, but also the adhesive and spreading properties of the cells and results in altered cell morphology. These effects of TIMP-2 appear to be mediated by inhibition of gelatinase A activity. We conclude that gelatinase A, in addition to contributing to proteolysis of ECM components, also functions to proteolyse cell surface components that mediate attachment of A2058 cells to the ECM. Thus, gelatinase A may function to modulate cell attachment and facilitate cell migration and invasion.  相似文献   

11.
Heparanase is a heparan sulfate (HS) degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys(158)-Asp(171), termed KKDC) was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity.  相似文献   

12.
Integrin-linked kinase (ILK) is a multidomain focal adhesion (FA) protein that functions as an important regulator of integrin-mediated processes. We report here the identification and characterization of a new calponin homology (CH) domain-containing ILK-binding protein (CH-ILKBP). CH-ILKBP is widely expressed and highly conserved among different organisms from nematodes to human. CH-ILKBP interacts with ILK in vitro and in vivo, and the ILK COOH-terminal domain and the CH-ILKBP CH2 domain mediate the interaction. CH-ILKBP, ILK, and PINCH, a FA protein that binds the NH(2)-terminal domain of ILK, form a complex in cells. Using multiple approaches (epitope-tagged CH-ILKBP, monoclonal anti-CH-ILKBP antibodies, and green fluorescent protein-CH-ILKBP), we demonstrate that CH-ILKBP localizes to FAs and associates with the cytoskeleton. Deletion of the ILK-binding CH2 domain abolished the ability of CH-ILKBP to localize to FAs. Furthermore, the CH2 domain alone is sufficient for FA targeting, and a point mutation that inhibits the ILK-binding impaired the FA localization of CH-ILKBP. Thus, the CH2 domain, through its interaction with ILK, mediates the FA localization of CH-ILKBP. Finally, we show that overexpression of the ILK-binding CH2 fragment or the ILK-binding defective point mutant inhibited cell adhesion and spreading. These findings reveal a novel CH-ILKBP-ILK-PINCH complex and provide important evidence for a crucial role of this complex in the regulation of cell adhesion and cytoskeleton organization.  相似文献   

13.
Cell-extracellular matrix (cell-ECM) interactions mediated by integrin receptors are essential for providing positional and environmental information necessary for many cell functions, such as proliferation, differentiation and survival. In vitro studies on cell adhesion to randomly adsorbed molecules on substrates have been limited to sub-micrometer patches, thus preventing the detailed study of structural arrangement of integrins and their ligands. In this article, we illustrate the role of the distance between integrin ligands, namely the RGD (arginine-glycine-aspartate) sequence present in ECM proteins, in the control of cell adhesion. By using substrates, which carry cyclic RGD peptides arranged in highly defined nanopatterns, we investigated the dynamics of cell spreading and the molecular composition of adhesion sites in relation to a fixed spacing between the peptides on the surface. Our novel approach for in vitro studies on cell adhesion indicates that not only the composition, but also the spatial organization of the extracellular environment is important in regulating cell-ECM interactions.  相似文献   

14.
15.
Collagens V and VI have been previously identified as specific extracellular matrix (ECM) ligands for the NG2 proteoglycan. In order to study the functional consequences of NG2/collagen interactions, we have utilized the GD25 cell line, which does not express the major collagen-binding beta(1) integrin heterodimers. Use of these cells has allowed us to study beta(1) integrin-independent phenomena that are mediated by binding of NG2 to collagens V and VI. Heterologous expression of NG2 in the GD25 line endows these cells with the capability of attaching to surfaces coated with collagens V and VI. The specificity of this effect is emphasized by the failure of NG2-positive GD25 cells to attach to other collagens or to laminin-1. More importantly, NG2-positive GD25 cells spread extensively on collagen VI. beta(1) integrin-independent extension of ruffling lamellipodia demonstrates that engagement of NG2 by the collagen VI substratum triggers signaling events that lead to rearrangement of the actin cytoskeleton. In contrast, even though collagens V and VI each bind to the central segment of the NG2 ectodomain, collagen V engagement of NG2 does not trigger cell spreading. The distinct morphological consequences of NG2/collagen VI and NG2/collagen V interaction indicate that closely-related ECM ligands for NG2 differ in their ability to initiate transmembrane signaling via engagement of the proteoglycan.  相似文献   

16.
We previously demonstrated that TIMP-2 treatment of human microvascular endothelial cells (hMVECs) activates Rap1 via the pathway of paxillin-Crk-C3G. Here, we show that TIMP-2 overexpression in hMVECs by adenoviral infection enhances Rap1 expression, leading to further increase in Rap1-GTP. TIMP-2 expression, previously reported to inhibit cell migration, also leads to cell spreading accompanied with increased cell adhesion. HMVECs stably expressing Rap1 display a similar phenotype as hMVECs-TIMP-2, whereas the expression of inactive Rap1 mutant, Rap1(38N), leads to elongated appearance with greatly reduced cell adhesion. Furthermore, the phenotype of hMVECs-Rap1(38N) was not reversed by TIMP-2 overexpression. TIMP-2 greatly promotes the association of Rap1 with actin. Therefore, these findings suggest that TIMP-2 mediated alteration in cell morphology requires Rap1, TIMP-2 may recruit Rap1 to sites of actin cytoskeleton remodeling necessary for cell spreading, and enhanced cell adhesion by TIMP-2 expression may hinder cell migration.  相似文献   

17.
Eph signaling, which arises following stimulation by ephrins, is known to induce opposite cell behaviors such as promoting and inhibiting cell adhesion as well as promoting cell-cell adhesion and repulsion by altering the organization of the actin cytoskeleton and influencing the adhesion activities of integrins. However, crosstalk between Eph/ephrin with integrin signaling has not been fully elucidated in leukocytes, including monocytes and their related cells. Using a cell attachment stripe assay, we have shown that, following stimulation with ephrin-A1, kinase-independent EphA2 promoted cell spreading/elongation as well as adhesion to integrin ligand-coated surfaces in cultured U937 (monocyte) and J774.1 (monocyte/macrophage) cells as well as sublines of these cells expressing dominant negative EphA2 that lacks most of the intracellular region. Moreover, a pull-down assay showed that dominant negative EphA2 is recruited to the β2 integrin/ICAM1 and β2 integrin/VCAM1 molecular complexes in the subline cells following stimulation with ephrin-A1-Fc. Notably, this study is the first comprehensive analysis of the effects of EphA2 receptors on integrin-mediated cell adhesion in monocytic cells. Based on these findings we propose that EphA2 promotes cell adhesion by an unknown signaling pathway that largely depends on the extracellular region of EphA2 and the activation of outside-in integrin signaling.  相似文献   

18.
Eph signaling, which arises following stimulation by ephrins, is known to induce opposite cell behaviors such as promoting and inhibiting cell adhesion as well as promoting cell-cell adhesion and repulsion by altering the organization of the actin cytoskeleton and influencing the adhesion activities of integrins. However, crosstalk between Eph/ephrin with integrin signaling has not been fully elucidated in leukocytes, including monocytes and their related cells. Using a cell attachment stripe assay, we have shown that, following stimulation with ephrin-A1, kinase-independent EphA2 promoted cell spreading/elongation as well as adhesion to integrin ligand-coated surfaces in cultured U937 (monocyte) and J774.1 (monocyte/macrophage) cells as well as sublines of these cells expressing dominant negative EphA2 that lacks most of the intracellular region. Moreover, a pull-down assay showed that dominant negative EphA2 is recruited to the β2 integrin/ICAM1 and β2 integrin/VCAM1 molecular complexes in the subline cells following stimulation with ephrin-A1-Fc. Notably, this study is the first comprehensive analysis of the effects of EphA2 receptors on integrin-mediated cell adhesion in monocytic cells. Based on these findings we propose that EphA2 promotes cell adhesion by an unknown signaling pathway that largely depends on the extracellular region of EphA2 and the activation of outside-in integrin signaling.  相似文献   

19.
A strategy for patterned cell adhesion based on chemical surface modification is presented. To confine cell adhesion to specific locations, an engineered surface for high-contrast protein adsorption and, hence, cell attachment has been developed. Surface functionalization is based on selective molecular-assembly patterning (SMAP). An amine-terminated self-assembled monolayer is used to define areas of cell adhesion. A protein-repellent grafted copolymer, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG), is used to render the surrounding silicon dioxide resistant to protein adsorption. X-ray photoelectron spectroscopy, scanning ellipsometry and fluorescence microscopy techniques were used to monitor the individual steps of the patterning process. Successful guided growth using these layers is demonstrated with primary neonatal rat cardiomyocytes, up to 4 days in vitro, and with the HL-1 cardiomyocyte cell line, up to 7 days in vitro. The advantage of the presented method is that high-resolution engineered surfaces can be realized using a simple, cost-effective, dip-and-rinse process. The technique has been developed for application on a CMOS cell-based biosensor, which comprises an array of microelectrodes to extracellularly record electrical activity from cardiomyocytes.  相似文献   

20.
Endometrial carcinoma differential 3 (EDI3) was the first member of the glycerophosphodiesterase (GDE) protein family shown to be associated with cancer. Our initial work demonstrated that endometrial and ovarian cancer patients with primary tumors overexpressing EDI3 had a higher risk of developing metastasis and decreased survival. Further analysis indicated that EDI3 cleaves glycerophosphocholine to choline and glycerol-3-phosphate, increases the levels of active PKC, and enhances the migratory activity of tumor cells. Despite these initial findings, EDI3 remained mainly uncharacterized. Therefore, to obtain an overview of processes in which EDI3 may be involved, gene array analysis was performed using MCF-7 breast cancer cells after EDI3 knockdown compared with a non-targeting control siRNA. Several biological motifs were altered, including an enrichment of genes involved in integrin-mediated signaling. More specifically, silencing of EDI3 in MCF-7 and OVCAR-3 cells was associated with reduced expression of the key receptor subunit integrin β1, leading to decreased cell attachment and spreading accompanied by delayed formation of cell protrusions. To confirm these results, we stably overexpressed EDI3 in MCF-7 cells which led to elevated integrin β1 expression associated with enhanced cell attachment and spreading - two processes critical for metastasis. In conclusion, our data provide further insight into the role of EDI3 during cancer progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号