首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Standardized sample preparation to reduce proteome complexity facilitates subsequent proteome analysis. Here we describe a robust sequential extraction method that enables simple fractionation of proteins in their native state according to their subcellular localization, yielding four subproteomes enriched in (a) cytosolic; (b) membrane and membrane organelle-localized; (c) soluble and DNA-associated nuclear and (d) cytoskeletal proteins. Efficiency and selectivity is demonstrated by morphological-, two-dimensional electrophoresis image-, immunological- as well as enzymatic-analysis. In pilot studies, subcellular redistribution of regulatory proteins was successfully measured.  相似文献   

2.
The endogenous phosphorylation of specific proteins was studied in subcellular fractions from proliferating and cAMP-induced differentiated neuroblastoma cells. Fractions containing nuclear, membrane-bound, and cytosolic proteins were incubated with [-32P]ATP, in the presence and absence of added cyclic nucleotides. Phosphate incorporation into specific proteins was determined by slab-gel electrophoresis of sodium dodecyl sulfate-solubilized reaction products. Cytosol fractions from differentiated cells demonstrated a twofold increase in cAMP-dependent phosphorylation of a specific protein with apparent mol wt of 59,000 daltons and a comparable decrease in cAMP-independent phosphorylation of another protein (97,000). The nuclear fraction of differentiated cells showed an increase in the cAMP-independent phosphorylation of two nonhistone proteins (110,000 and 102,000). Membrane fractions from differentiated cells exhibited a differential decrease in endogenous phosphorylation of specific proteins. Selective alterations in the phosphorylation of specific proteins in various subcellular components may be important biochemical events associated with the increased levels of differentiated functions in neuroblastoma cells in culture.  相似文献   

3.
4.
Ubiquitin is a highly conserved, 76-amino acid, eukaryotic protein. Its widely accepted role as a proteolytic cofactor depends on its unique ability to covalently ligate to other cellular proteins. While there is good evidence for the existence of such ubiquitinated proteins in the cytosolic and nuclear compartments, relatively little is known about the presence of free ubiquitin and ubiquitinated proteins in other subcellular compartments. This is especially true of higher plants, which have not previously been the subject of extensive biochemical subcellular localizations of ubiquitinated proteins. We extracted cell wall proteins and purified nuclei, vacuoles, chloroplasts, and microsomes from chlorophyllous tissues of Arabidopsis. Immunoblot analyses were used to compare the profiles of ubiquitinated proteins from purified subcellular fractions to those from unfractionated extracts. Purified nuclei contained, in addition to a complex mixture of high molecular mass ubiquitinated proteins, a strongly immunoreactive 28-kDa protein. In the apoplastic extract, we did not detect any ubiquitinated proteins enriched above the background level of those due to cytosolic contamination. Vacuoles appeared to contribute significantly to the ubiquitinated proteins present in the whole protoplast extract. At least three high molecular mass ubiquitinated proteins were unique to the vacuolar extract. Chloroplast stromal proteins did not react specifically with anti-ubiquitin antibodies. When microsomal ubiquitinated proteins were compared to those found in a whole protoplast extract, a distinct pattern was evident. Microsomal ubiquitinated proteins were not visible in the 10,000 x g supernatant used to prepare the 100,000 x g pellet, indicating that they were probably low abundance proteins in the protoplast extract.  相似文献   

5.
Cell surface-associated materials of Actinobacillus actinomycetemcomitans were extracted by a short incubation of the cell suspension in a Tris-buffered saline in the presence and absence of a restriction enzyme, EcoRI. The supernatants (which we termed EcoRI extract and surface extract, respectively) contained a number of extracellularly released proteins. Of these proteins, four major proteins were identified by N-terminal sequencing to be the 34 and 39 kDa outer membrane proteins, the GroEL-like protein, and a 47 kDa protein homologous to Haemophilus influenzae enolase. Enolase activity was found in the extracts and its relative amount of activity in the EcoRI extract from a culture of the mid-exponential growth phase was estimated as 5.7% of total enzyme activity. In contrast, the relative amount of activity of another cytosolic enzyme, lactate dehydrogenase, was extremely low in the extracts and also in the culture supernatant. These results suggest the external localization of enolase in this bacterium.  相似文献   

6.
7.
Fennel (Foeniculum vulgare Mill.) member from the family Umbelliferae (Apiaceae) and has been used in Saudi Arabia as an medicine as of the from the tradition. Our previous work with seed extracts of this plant generated DEAE-ion exchange purified proteins that exhibited antibacterial properties. The current study moves this work forward by using 2-D gel separation and MALDI TOF/TOF to identify proteins in this active extract. Fourteen protein spots were excised, digested, and identified. Several putative functions were identified, including: a copper-trans locating ATPase PAA1 chloroplastic-like isoform X1; a cytosolic enolase; a putative pentatricopeptide repeat-containing protein; an NADP-requiring isocitrate dehydrogenase; two proteins annotated as being encoded downstream from Son-like proteins; three probable nuclear proteins 5–1; and four predicted/ unidentified proteins. Future efforts will further characterize their relevant antimicrobial properties with the aim of cloning and high throughput synthesis of the antimicrobial element(s).  相似文献   

8.
The subcellular localization of insulin signaling proteins is altered by various stimuli such as insulin, insulin-like growth factor I, and oxidative stress and is thought to be an important mechanism that can influence intracellular signal transduction and cellular function. This study examined the possibility that exercise may also alter the subcellular localization of insulin signaling proteins in human skeletal muscle. Nine untrained males performed 60 min of cycling exercise (approximately 67% peak pulmonary O2 uptake). Muscle biopsies were sampled at rest, immediately after exercise, and 3 h postexercise. Muscle was fractionated by centrifugation into the following crude fractions: cytosolic, nuclear, and a high-speed pellet containing membrane and cytoskeletal components. Fractions were analyzed for protein content of insulin receptor, insulin receptor substrate (IRS)-1 and -2, p85 subunit of phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3 (GSK-3). There was no significant change in the protein content of the insulin signaling proteins in any of the crude fractions after exercise or 3 h postexercise. Exercise had no significant effect on the phosphorylation of IRS-1 Tyr612 in any of the fractions. In contrast, exercise increased (P < 0.05) the phosphorylation of Akt Ser473 and GSK-3alpha/beta Ser9/21 in the cytosolic fraction only. In conclusion, exercise can increase phosphorylation of downstream insulin signaling proteins specifically in the cytosolic fraction but does not result in changes in the subcellular localization of insulin signaling proteins in human skeletal muscle. Change in the subcellular protein localization is therefore an unlikely mechanism to influence signal transduction pathways and cellular function in skeletal muscle after exercise.  相似文献   

9.
ObjectivesSubcellular fractionation of whole cell lysates offers a means of simplifying protein mixtures, potentially permitting greater depth of proteomic analysis. Here we compare proteins identified from pancreatic duct cells (PaDC) following organelle enrichment to those identified from PaDC whole cell lysates to determine if the additional procedures of subcellular fractionation increase proteome coverage.MethodsWe used differential centrifugation to enrich for nuclear, mitochondrial, membrane, and cytosolic proteins. We then compared – via mass spectrometry-based analysis – the number of proteins identified from these four fractions with four biological replicates of PaDC whole cell lysates.ResultsWe identified similar numbers of proteins among all samples investigated. In total, 1658 non-redundant proteins were identified in the replicate samples, while 2196 were identified in the subcellular fractionation samples, corresponding to a 30% increase. Additionally, we noted that each organelle fraction was in fact enriched with proteins specific to the targeted organelle.ConclusionsSubcellular fractionation of PaDC resulted in greater proteome coverage compared to PaDC whole cell lysate analysis. Although more labor intensive and time consuming, subcellular fractionation provides greater proteome coverage, and enriches for compartmentalized sub-populations of proteins. Application of this subcellular fractionation strategy allows for a greater depth of proteomic analysis and thus a better understanding of the cellular mechanisms of pancreatic disease.  相似文献   

10.
Abstract: We analyzed the expression and relative distribution of mRNA for the regulatory subunits (RIα, RIIα, and RIIβ) and of 150-kDa RIIβ-anchor proteins for cyclic AMP (cAMP)-dependent protein kinase (PKA) into discrete brain regions. The subcellular distribution of both holoenzyme and free catalytic subunit was evaluated in the same CNS areas. In the neocortex and corpus striatum high levels of RIIβ paralleled the presence of specific RII-anchoring proteins, high levels of membrane-bound PKA holoenzyme, and low levels of cytosolic free catalytic activity (C-PKA). Conversely, in brain areas showing low RIIβ levels (cerebellum, hypothalamus, and brainstem) we found an absence of RII-anchoring proteins, low levels of membrane-bound holoenzyme PKA, and high levels of cytosolic dissociated C-PKA. Response to cAMP stimuli was specifically evaluated in the neocortex and cerebellum, prototypic areas of the two different patterns of PKA distribution. We found that cerebellar holoenzyme PKA was highly sensitive to cAMP-induced dissociation, without, however, a consistent translocation of C-PKA into the nucleus. In contrast, in the neocortex holoenzyme PKA was mainly in the undissociated state and poorly sensitive to cAMP. In nuclei of cortical cells cAMP stimulated the import of C-PKA and phosphorylation of cAMP-responsive element binding protein. Taken together, these data suggest that RIIβ (whose distribution is graded throughout the CNS, reaching maximal expression in the neocortex) may represent the molecular cue of the differential nuclear response to cAMP in different brain areas, by controlling cAMP-induced holoenzyme PKA dissociation and nuclear accumulation of catalytic subunits.  相似文献   

11.
The subcellular distribution of proteins normally visible on two-dimension gels of rat brain tissue punches and crude brain homogenate was investigated using two-dimensional gel electrophoresis and computerized scanning densitometry. Seven enriched subcellular fractions (cytosol, mitochondria, microsomes, nucleus, crude synaptic vesicles, myelin and synaptic membrane) were generated from a crude extract of rat brain. Fifty microgram samples of the crude homogenate and each fraction were then taken and the proteins within these samples separated by two-dimensional gel electrophoresis. Proteins were stained with silver and the gels then analyzed by computerized scanning densitometry. Of 136 proteins visible on two-dimension gels of the crude homogenate that were quantitatively examined, a total of 73 (54%) were identified as being primarily located in a single subcellular fraction. The majority of these 73 proteins were found to be located primarily in either the cytosolic or mitochondrial fractions, while fewer proteins were identified as being primarily located in the microsomal, nuclear or crude synaptic vesicular subfractions. In contrast, the myelin and synaptic membrane fractions were found to be the primary location for only a single protein each that is clearly visible in the crude homogenate. In addition, gels of four of the subfractions (mitochondria, cytosol, nucleus and myelin) contained proteins that are not normally visible on gels generated using a crude extract. The subcellular location of a number of proteins found previously to be altered by specific experimental manipulations was also determined, providing further information on these proteins in brain. These results should prove useful in future experiments designed towards isolating and characterizing specific proteins of neurochemical interest.  相似文献   

12.
Hepatocellular carcinoma (HCC) is one of the leading causes of mortality from solid organ malignancy worldwide. Because of the complexity of proteins within liver cells and tissues, the discovery of therapeutic targets of HCC has been difficult. To investigate strategies for decreasing the complexity of tissue samples for detecting meaningful protein mediators of HCC, we employed subcellular fractionation combined with 1D-gel electrophoresis and liquid chromatography-tandem mass spectrometry analysis. Moreover, we utilized a statistical method, namely, the Power Law Global Error Model (PLGEM), to distinguish differentially expressed proteins in a duplicate proteomic data set. Mass spectrometric analysis identified 3045 proteins in nontumor and HCC from cytosolic, membrane, nuclear, and cytoskeletal fractions. The final lists of highly differentiated proteins from the targeted fractions were searched for potentially translocated proteins in HCC from soluble compartments to the nuclear or cytoskeletal compartments. This analysis refined our targets of interest to include 21 potential targets of HCC from these fractions. Furthermore, we validated the potential molecular targets of HCC, MATR3, LETM1, ILF2, and IQGAP2 by Western blotting, immunohistochemisty, and immunofluorescent microscopy. Here we demonstrate an efficient strategy of subcellular tissue proteomics toward molecular target discovery of one of the most complicated human disease, HCC.  相似文献   

13.
Models of the assembly of cytoskeletal and contractile proteins of eukaryotic cells require quantitative information about the rates of synthesis of individual component proteins. We applied the dual isotope technique of Clark and Zak (1981, J. Biol. Chem., 256:4863-4870) to measure the synthesis rates of cytoskeletal and contractile proteins in stationary and growing cultures of IMR-90 fibroblasts. Fibroblast proteins were labeled to equilibrium with [14C]leucine over several days, at the end of which there was a 4-h pulse with [3H]leucine. Fractional synthesis rates (percent per hour) were calculated from the 3H/14C ratio of cell protein extracts or protein purified by one- or two-dimensional polyacrylamide gel electrophoresis and the 3H/14C ratio of medium-free leucine. The average fractional synthesis rate for total, SDS- or urea-soluble; Triton-soluble; and cytoskeletal protein extracts in stationary cells each was approximately 4.0%/h. The range of values for the synthesis of individual proteins from total cell extracts or cytoskeletal extracts sliced from one-dimensional gels was similar, though this range was greater than that for major proteins of Triton-soluble protein extracts. Three specific cytoskeletal proteins--actin, vimentin, and tubulin--were synthesized at similar rates that were significantly slower than the average fractional synthesis rate for total protein. Myosin, on the other hand, was synthesized faster than average. Synthesis rates were the same for beta-and gamma-actin and polymerized (cytoskeletal extract) vs. Triton-soluble actin. The same was true for alpha- and beta-tubulin and two different forms of vimentin. Synthesis rates were uniformly higher in growing cells, though the same pattern of differential rates was observed as for stationary cells. Synthesis rates in growing cells were higher than the rate necessary to maintain the growth rate, even for those cytoskeletal proteins being synthesized slowly. Therefore, there appears to be some turnover of these cytoskeletal elements even during growth. We conclude that proteins in cytoskeletal extracts may have nonuniform rates of synthesis, but at least one important subclass of cytoskeletal proteins that comprise filament subunits have the same synthesis rates.  相似文献   

14.
Cell-free extracts of epimastigotes of Trypanosoma cruzi contain tyrosine aminotransferase (TAT) and p-hydroxyphenyllactate dehydrogenase (pHPLDH). The TAT activity could be separated from aspartate aminotransferase (ASAT) by polyacrylamide gel electrophoresis or DEAE-cellulose chromatography; the latter procedure also allowed complete separation of pHPLDH. The subcellular localization of both T. cruzi enzymes, as determined by digitonin extraction, subcellular fractionation by differential centrifugation, and isopycnic ultracentrifugation in sucrose gradients, was mainly cytosolic, with low mitochondrial activities.  相似文献   

15.
Two different methods for the extraction and assay of plastoquinones A, B, C and D from chloroplasts of green plants have been described. The long procedure involves separation of aqueous and lipid phases of extract in a separatory funnel, column chromatography, purification on thin-layer plates, and spectrophotometric assays for quantitative determination of the various plastoquinones. The short procedure is based on spotting lipid extracts from chloroplasts on thin layer plates and comparing leucomethylene blue spots of unknown quinones with a series of spots produced by known amounts of the 4 standard plastoquinones on the same plate.

Reliability of the 2 procedures is shown by presenting recovery data (82% recovery for PQ A by the long method and 64-100% recovery by the short method). Various solvent systems for quinone purification are described. Separation of plastoquinones B and C into 6 components each is demonstrated for spinach and a tomato mutant, high pigment (hp). Plastoquinone C is shown to be equivalent to C1-C4 while D corresponds to PQ C5 and C6 according to Griffiths, Wallwork and Pennock's designation. The term PQ D is therefore redundant and should be abandoned in favor of specific designation of PQ C type.

  相似文献   

16.
Phosphatidylinositol-specific phospholipase C of murine lymphocytes   总被引:3,自引:0,他引:3  
Phosphatidylinositol-specific phospholipase C (PI-phospholipase C) was found primarily in the cytosolic fraction of murine splenic lymphocytes. However, small but significant amounts of the activity of the enzyme were detected in the microsome and plasma membrane fractions. Both the cytosolic and membrane-bound phospholipases C specifically hydrolyzed inositol phospholipids, phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. PI-Phospholipase C activity was detected in the cytosolic and microsome fractions from both T-cell-enriched and B-cell-enriched spleen cells. The membrane-bound enzyme was distinguishable from the cytosolic enzyme in the following properties. The cytosolic PI-phospholipase C showed optimal activity at pH 6.0 while the membrane-bound enzyme had two pH optima between pH 5.0 and 7.0. The activity of the cytosolic enzyme was first detected at 1 microM Ca2+, and maximum activity was observed at 100 microM Ca2+, while the membrane-bound PI-phospholipase C required higher Ca2+ concentrations, of millimolar order. The membrane-bound enzyme could hardly be extracted with 1 M NaCl but was extracted with 0.4% cholate.A portion of the membrane-bound PI-phospholipase C activity in the cholate extract was absorbed by concanavalin A-Sepharose and specifically eluted with an alpha-methylmannoside solution. The cytosolic enzyme, which was water soluble, did not bind to concanavalin A-Sepharose. Trypsinization of lymphocytes before subcellular fractionation caused a significant decrease in the PI-phospholipase C activity in the microsome fraction but almost no loss at all of the cytosolic enzyme activity.  相似文献   

17.
Protein 4.1R, a multifunctional structural protein, acts as an adaptor in mature red cell membrane skeletons linking spectrin-actin complexes to plasma membrane-associated proteins. In nucleated cells protein 4.1 is not associated exclusively with plasma membrane but is also detected at several important subcellular locations crucial for cell division. To identify 4.1 domains having critical functions in nuclear assembly, 4.1 domain peptides were added to Xenopus egg extract nuclear reconstitution reactions. Morphologically disorganized, replication deficient nuclei assembled when spectrin-actin-binding domain or NuMA-binding C-terminal domain peptides were present. However, control variant spectrin-actin-binding domain peptides incapable of binding actin or mutant C-terminal domain peptides with reduced NuMA binding had no deleterious effects on nuclear reconstitution. To test whether 4.1 is required for proper nuclear assembly, 4.1 isoforms were depleted with spectrin-actin binding or C-terminal domain-specific antibodies. Nuclei assembled in the depleted extracts were deranged. However, nuclear assembly could be rescued by the addition of recombinant 4.1R. Our data establish that protein 4.1 is essential for nuclear assembly and identify two distinct 4.1 domains, initially characterized in cytoskeletal interactions, that have crucial and versatile functions in nuclear assembly.  相似文献   

18.
Different methods were tested for the extraction of proteins from the cell wall-enriched fraction (CWEf) obtained from a sample formed by skin and seeds of ripe berries of Vitis vinifera L. cv. Cabernet Sauvignon. The CWEf was isolated using a disruptive approach that involves tissue homogenization and precipitation by centrifugation. To extract proteins, the CWEf was treated with CaCl(2) and LiCl in two successive steps or, alternatively, with phenol. The efficiency of the protocols was evaluated by measuring protein yield and by analyzing two-dimensional gel electrophoresis (2-DE) gels for the highest detectable spot number and the greatest spot resolution. The phenol method was also adopted for the extraction of proteins from the cytosolic fraction (CYf). The comparison of 2-DE reference maps of protein extracts from CWEf and CYf indicated the presence of both common traits and unique characteristics. To survey this aspect some spots detected in both fractions or present in only one fraction were analyzed by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Of the 47 spots identified, some were found to be cell wall proteins, while others were proteins not traditionally considered as localized in the apoplastic space. The data presented here provide initial information regarding the apoplastic proteome of grape berry tissues, but also raise the issue of the technical problems that characterize the isolation of cell wall proteins from these very hardy tissues.  相似文献   

19.
The molecular mechanisms underlying normal and pathological spermatogenesis remain poorly understood. We compared protein concentrations in different germ cell types to identify those proteins specifically or preferentially expressed at each stage of rat spermatogenesis. Crude cytosolic protein extracts and reversed-phase HPLC prefractionated cytosolic extracts from spermatogonia, pachytene spermatocytes, and early spermatids were subjected to two-dimensional difference gel electrophoresis (2-D DIGE). By comparing gels and carrying out statistical analyses, we were able to identify 1274 protein spots with relative abundances differing significantly between the three cell types. We found that 265 of these spots displaying highly differential expression (ratio > or = 2.5 between two cell types), identified by mass fingerprinting, corresponded to 123 nonredundant proteins. The proteins clustered into three clades, corresponding to mitotic, meiotic, and post-meiotic cell types. The differentially expressed proteins identified by 2-D DIGE were confirmed and validated by western blotting and immunohistochemistry, in the few cases in which antibodies were available. 2-D DIGE appears a relevant proteomics approach for studying rat germ cell differentiation, allowing the establishment of the precise expression profiles for a relatively large number of proteins during normal spermatogenesis.  相似文献   

20.
Tay TL  Lin Q  Seow TK  Tan KH  Hew CL  Gong Z 《Proteomics》2006,6(10):3176-3188
In the present study, profiles of protein expression were examined during early development of zebrafish, an increasingly popular experimental model in vertebrate development and human diseases. By 2-DE, an initial increase in protein spots from 6 h post-fertilization (hpf) to 8-10 hpf was observed. There was no dramatic change in protein profiles up to 18 hpf, but significant changes occurred in subsequent stages. Interestingly, 49% of the proteins detected at 6 hpf remained detectable by 1 week of age. To map the protein expression patterns in 2-D gels, MALDI-TOF/TOF MS was employed to identify selected protein spots from early embryos. 108 protein spots were found to match known proteins and they were derived from 55 distinct genes. Interestingly, 11 (20%) of them produced multiple protein isoforms or distinct cleavage products. Although deyolked embryos were used in the analysis, a large number of vitellogenin derivatives remained prominently present in the embryos. Other than these, most of the identified proteins are cytosolic, cytoskeletal and nuclear proteins, which are involved in diversified functions such as metabolism, cytoskeleton, translation, protein degradation, etc. Some of the proteins with interesting temporal expression profiles during development are further discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号