首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1) The treatment of choice for Parkinson’s disease (PD) is 3,4-dihydroxyphenylalanine (L-DOPA) with peripheral decarboxylase inhibitor, but long-term therapy leads to motor and psychiatric complications. In the present study we investigated 5-hydroxytryptamine (5-HT) and dopamine concentrations in serotonergic and dopaminergic nuclei following chronic administration of L-DOPA to find whether the neurotransmitter synthesis in these brain areas are compensated. (2) Rats were administered L-DOPA (250 mg/kg) and carbidopa (25 mg/kg) daily for 59 and 60 days, and killed on the 60th day, respectively at 24 h and 30 min after the last dose. L-DOPA, norepinephrine, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), dopamine, homovanillic acid (HVA), and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured in striatum, nucleus raphe dorsalis (NRD), nucleus accumbens (NAc), substantia nigra, cerebellum, and cortex employing HPLC-electrochemical procedure. (3) Prolonged treatment of L-DOPA caused depression in the animals as revealed in a forced swim test. Serotonin content was significantly decreased in all brain regions studied 30 min after long-term L-DOPA, except in NAc. The cortex and striatum showed lowered levels of this indoleamine 24 h after 59 doses of L-DOPA. Dopamine, HVA, and DOPAC concentrations were significantly higher in all the regions studied after 30 min, and in the cerebellum after 24 h of L-DOPA. The levels of DOPAC were elevated in all the brain areas studied 24 h after prolonged L-DOPA treatment. (4) The present results suggest that long-term L-DOPA treatment results in significant loss of 5-HT in serotonergic and dopaminergic regions of the brain. Furthermore, while L-DOPA metabolism per se was uninfluenced, dopamine synthesis was severely impaired in all the regions. The imbalance of serotonin and dopamine formation may be the cause of overt cognitive, motor, and psychological functional aberrations seen in parkinsonian patients following prolonged L-DOPA treatment.  相似文献   

2.
N-Methyl-D-aspartate (NMDA) administration exacerbates neurological dysfunction after traumatic spinal cord injury in rats, whereas NMDA antagonists improve outcome in this model. These observations suggest that release of excitatory amino acids contributes to secondary tissue damage after traumatic spinal cord injury. To further examine this hypothesis, concentrations of free amino acids were measured in spinal cord samples from anesthetized rats subjected to various degrees of impact trauma to the T9 spinal segment. Levels of excitatory and inhibitory neurotransmitter amino acids [gamma-aminobutyric acid (GABA), glutamate, aspartate, glycine, taurine] and levels of nonneurotransmitter amino acids (asparagine, glutamine, alanine, threonine, serine) were determined at 5 min, 4 h, and 24 h posttrauma. Uninjured surgical (laminectomy) control animals showed modest but significant declines in aspartate and glutamate levels, but not in other amino acids, at all time points. In injured animals, the excitatory amino acids glutamate and aspartate were significantly decreased by 5 min posttrauma, and remained depressed at 4 h and 24 h as compared with corresponding laminectomy controls. In contrast, the inhibitory amino acids, glycine, GABA, and taurine, were decreased at 5 min postinjury, had partially recovered at 4 h, and were almost fully recovered at 24 h. The nonneurotransmitter amino acids were unchanged at 5 min posttrauma and significantly increased at 4 h, with partial recovery at 24 h. At 4 h postinjury, severe trauma caused significantly greater decreases in aspartate and glutamate than did either mild or moderate injury. These findings are consistent with the postulated role of excitatory amino acids in CNS trauma.  相似文献   

3.
Free radicals play an important role in the pathogenesis of brain injury. This study evaluates the potential relationship between ischaemia/reperfusion (I/R)-induced brain injury, peripheral oxidative stress (lymphocyte DNA damage), plasma antioxidant potential and uric acid levels. We observed that 15 min of ischaemia were sufficient to significantly increase lymphocyte DNA damage that remained elevated at the end of early (3 h) reperfusion and at later (72 h) reperfusion time; this parameter was not significantly increased, when compared to preoperated levels. In parallel, antioxidant potential was elevated after 15 min of ischaemia, remained high at early (3 h) reperfusion and decreased again with longer (72 h) reperfusion. A close association between the plasma antioxidant status and the uric acid content has been confirmed by findings that changes in TRAP values positively correlate with uric acid concentration in rat plasma after ischaemic injury. Moreover, results of in vitro experiments with extra uric acid addition to control plasma have shown that uric acid contributes to a greater part of TRAP values. These results indicate a similar time course of brain I/R-associated oxidative stress and peripheral antioxidant defence status and/or oxidative stress in animal experiments.  相似文献   

4.
This study evaluated the effect of mechanogated membrane ion channel blockers on brain catalase (CAT) activity and thiobarbituric acid reactive substances (TBARS) production after traumatic brain injury (TBI). A weight drop trauma model was used. Controls were sham-operated and received no weight drop. Gadolinium (GAD) or amiloride (AMI) were administered to control and experimental rats (30 min after TBI). Brain CAT activity and TBARS production were measured. When blood vessels were washed out with saline perfusion brain CAT activity significantly increased up to 6 h after trauma, decreasing significantly by 24 h; GAD or AMI administration preserved CAT activity 24 h after TBI. TBARS production increased after trauma, this effect being significantly reversed by GAD or AMI administration. GAD significantly decreased TBARS production in control animals. Mechanogated membrane ion channels may be involved in the genesis of the ionic disruption leading to oxidative stress and other secondary injury processes in head trauma.  相似文献   

5.
Cortisol levels of black bream Acanthopagrus butcheri at capture did not change with time of day, gonadal stage or season and were 1·9±0·2 and 2·8±0·4 ng ml−1 for male and female fish, respectively. Confinement resulted in significantly elevated cortisol levels at all time periods; however, levels after 24 h of confinement were significantly lower than peak cortisol levels (15 min for males and 1 h for females). Confinement stress resulted in reduced levels of 17β-oestradiol (E2) and testosterone (T) within 1 h in sexually mature females. In mature males, suppression of T and 11-ketotestosterone (11KT) occurred after 30 min and 6 h of confinement, respectively. The relationship between confinement stress and levels of 17,20β-dihydroxy-4-pregnen-3-one (17,20β P) was more complex, with levels in males being elevated after 15 min and 24 h and suppressed after 6 h of confinement. In contrast, 17, 20β P levels in females were elevated after 1 h of confinement. In regressed females, plasma E2 and T concentrations were low at capture and were not affected by confinement stress whereas plasma 17, 20β P was elevated within 1 h. This study indicates that stress exerts a rapid inhibitory effect on gonadal steroidogenesis.  相似文献   

6.
Abstract— The effect of amantadine on the rate of dopamine synthesis in rat corpus striatum was determined by three methods. (1) Measuring the rate of decline of endogenous dopamine following inhibition of synthesis with a-methyltyrosine (α-MT); (2) Measuring the rate of conversion of [3,5-3H]tyrosine to 3H-labelled catechols under conditions of an initial rate; and (3) measuring the levels of homovanillic acid (HVA), the principal metabolite of brain dopamine. Endogenous dopamine levels were 68-1 n-mole/g with a control synthesis rate of about 21 n-mole/g/h as determined using either α-MT or [3,5-3H]tyrosine. Amantadine had no effect on synthesis at doses up to 100 mg/kg using α-MT and [3,5-3H]tyrosine. HVA levels were unaffected after 30 mg/kg drug, but were elevated 48%(P < 005) after 100 mg/kg of drug. By contrast apomorphine reduced and haloperidol increased synthesis as determined by all three methods. It is concluded that amantadine has no marked effect on dopamine synthesis in rat corpus striatum.  相似文献   

7.
8.
Yang C  Gao J  Wang HY  Liu Q  Xu MH  Wang ZG  Jiang JX 《Cytokine》2011,54(1):29-35
Hypothalamus-pituitary-adrenal (HPA) axis is involved in the modulation of the innate immune response. The purpose of this study was to evaluate the dynamic relationship between plasma corticosterone and interleukin-6 in the hypothalamus-destroyed rats after blast injury. A total of 105 Sprague-Dawley rats were divided randomly into normal control (normal), sham operated (sham), blast injury plus sham operated (blast injury) and blast injury plus hypothalamus destruction groups. Symmetric electrolytic bilateral destruction of the hypothalamus was performed for the deeply anesthetic rats under sterile conditions. Seven days after the destruction of the hypothalamus, the animals were succumbed to moderate blast injury using a BST-I bioimpact machine. Plasma corticosterone and IL-6 levels were determined by radioimmunoassay and enzyme-linked immunosorbent assay, respectively. After blast injury, the corticosterone level in the hypothalamus-destroyed rats was significantly lower than that in the rats without destruction of hypothalamus at 3h (P<0.01) or from 5 to 8h (P<0.05). Reduction of corticosterone may be intrinsically correlated with the severe tissue injury and increased mortality (4/15 vs. 0/15, P<0.05). Circulating IL-6 level was markedly elevated in response to blast injury and hypothalamus destruction further increased IL-6 secretion (P<0.05). We concluded that elevation of pro-inflammatory IL-6 secretion might compensate the impaired HPA axis function after the trauma occurred in the hypothalamus-destroyed rats. These results also suggested that release of hypothalamus hormones is necessary to maintain certain magnitude of innate immunity after trauma.  相似文献   

9.
In order to study the role of nitric oxide (NO) in ischemic brain injury. Global cerebral ischemia was established in SD rats by modified Pulsinelli's method. The activities of constitutive nitric oxide synthase (cNOS), inducible NOS (iNOS), neuronal NOS (nNOS), nitrite (NO2) and cyclic GMP in cerebral cortex, hippocampus, striatum and cerebellum at different time intervals were measured by radioimmunoassy, NADPH‐d histochemistry and fluorometry methods. The results showed that the activities of cNOS increased at 5 min in four regions and decreased in cortex, hippocampus and striatum at 60 min, in cerebellum at 15 min iNOS increased in cortex and striatum at 15 min, in hippocampus and cerebellum at 10 min, and persisted to 60 min. The expression of nNOS increased after 5 min ischemia in cortex, striatum and hippocampus, and return to normal at 30–60 min. The NO2 and cGMP also increased after 5–15 min ischemia and returned to normal after 30–60 min ischemia. These results indicated that the NO participated in the pathogenesis of cerebral ischemia injury and different types of NOS play different role in the cerebral ischemia injuries. Selected specific NOS inhibitors to decreased the excessive production of NO at early stage may help to decrease the ischemic injury.  相似文献   

10.
To evaluate the role of adrenocortical hormones in stress- or cold-induced nonshivering thermogenesis, plasma corticosterone (CS) and deoxycorticosterone (DOCS) were measured with the aid of HPLC under various conditions. Repetitive immobilization stress (3 h/day, for 1 or 4 weeks) elevated the resting level (24 h after the last immobilization) of CS, but not DOCS. Acute stress (immobilization for 30 min) or cold exposure (-5 degrees C for 15 min) caused marked increases of CS and DOCS in both nonstressed naive controls and repetitively stressed rats. Four weeks, but not 1 week, of repetitive immobilization stress potentiated the responsiveness of CS to both acute stress and cold, and that of DOCS to acute stress, but not to cold. Cold acclimation (5 degrees C, 4 weeks) significantly elevated both corticosteroids but did not affect the resting levels (18 h after being transferred to 25 degrees C) or the responsiveness of both CS and DOCS to either acute stress or cold. These results suggest that repetitive immobilization stress, but not cold acclimation, could enhance nonshivering thermogenesis, at least in part, through an improvement in the responsiveness of adrenocortical hormone secretion to acute stress or cold.  相似文献   

11.
12.
In order to study the role of nitric oxide (NO) in ischemic brain injury. Global cerebral ischemia was established in SD rats by modified Pulsinelli's method. The activities of constitutive nitric oxide synthase (cNOS), inducible NOS (iNOS), neuronal NOS (nNOS), nitrite (NO2) and cyclic GMP in cerebral cortex, hippocampus, striatum and cerebellum at different time intervals were measured by radioimmunoassy, NADPH-d histochemistry and fluorometry methods. The results showed that the activities of cNOS increased at 5 min in four regions and decreased in cortex, hippocampus and striatum at 60 min, in cerebellum at 15 min iNOS increased in cortex and striatum at 15 min, in hippocampus and cerebellum at 10 min, and persisted to 60 min. The expression of nNOS increased after 5 min ischemia in cortex, striatum and hippocampus, and return to normal at 30–60 min. The NO2 and cGMP also increased after 5–15 min ischemia and returned to normal after 30–60 min ischemia. These results indicated that the NO participated in the pathogenesis of cerebral ischemia injury and different types of NOS play different role in the cerebral ischemia injuries. Selected specific NOS inhibitors to decreased the excessive production of NO at early stage may help to decrease the ischemic injury.  相似文献   

13.
CSF was continuously withdrawn from the third ventricle of anesthetized rats. CSF 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid concentrations were determined every 15 min by liquid chromatography coupled with electrochemical detection. Acute tyrosine hydroxylase inhibition [with alpha-methyl-p-tyrosine (alpha-MPT)] induced an exponential decline in levels of DOPAC and HVA in CSF. The decline in DOPAC and HVA concentrations was identical in CSF and forebrain but was much slower in the striatum, suggesting that CSF metabolites of 3,4-dihydroxyphenylethylamine (dopamine) reflect whole forebrain metabolites. The decay in CSF DOPAC and HVA levels after dopamine synthesis inhibition was also used as an in vivo index of forebrain dopamine turnover after various pharmacological treatments. Haloperidol pretreatment accelerated this decay, confirming the increase in brain dopamine turnover induced by neuroleptics. After reserpine pretreatment (15 h before), alpha-MPT produced a very sharp decay in levels of DOPAC and HVA. This result indicates that the residual dopamine that cannot be stored after reserpine treatment is very rapidly renewed and metabolized. Nomifensine strongly diminished the slope of DOPAC and HVA level decreases after alpha-MPT, a result which can be explained either by a slower dopamine turnover or by the involvement of storage dopamine pools. These results exemplify the use of monitoring the decay of dopamine metabolites after alpha-MPT administration in the study of the pharmacological action of drugs on the central nervous system of the rat.  相似文献   

14.
Glutathione content and glutamyl transpeptidase activity in different regions of adult female rat brain were determined at 10 and 30 min following intraventricular injection of LHRH and somatostatin. Hypothalamic glutathione levels were significantly elevated at 10 and 30 min after a single injection of a 0.1 micrograms dose of LHRH. On the contrary, glutathione levels significantly decreased in the hypothalamus, cerebral cortex and cerebellum at 10 and 30 min after 0.5 or 1 microgram dose. However, significant decrease in brain stem glutathione was evident at 30 min after 0.5 microgram and 10 min after the 1 microgram dose. Somatostatin at doses of 0.5 microgram and 1 microgram significantly decreased glutathione levels in all four brain regions both at 10 and 30 min following injection into the 3rd ventricle. Gamma-glutamyl transpeptidase activity in the hypothalamus and cerebral cortex was significantly elevated after intraventricular injection of LHRH. However, a significant increase in gamma-glutamyl transpeptidase activity in cerebellum and brain stem was seen only with 0.5 and 1 micrograms doses of LHRH. Somatostatin also significantly increased gamma-glutamyl transpeptidase activity in hypothalamus, cerebral cortex, brain stem and cerebellum. The decrease in glutathione levels with corresponding increase in gamma-glutamyl transpeptidase activity after intraventricular administration of LHRH and somatostatin suggests a possible interaction between glutathione and hypothalamic peptides.  相似文献   

15.
大鼠液压冲击脑损伤脑干c—jun mRNA表达的定位观察   总被引:2,自引:0,他引:2  
目的:研究大鼠中度侧位液压冲击脑损伤时脑干c-jun mRNA及其表达产物Jun变化规律。方法:雄性SD大鼠,随机分为正常对照组、手术对照组和损伤组。损伤组动物均给以0.2MPa液压冲击脑损伤,按冲击后处死时间不同再分为5min、15min、30min、1h、2h、4h、8h和12h组。应用免疫组织化学和原位杂交方法观察c-jun在脑干的表达。结果:脑冲击后15min-12h,Jun阳性细胞数逐渐增多。冲击后5min,c-jun mRNA表达开始增强,2h表达最强,然后逐渐减弱。结论:侧位液压冲击脑损伤后c-jun在脑干表达迅速增强,持续时间较长。  相似文献   

16.
N-acetylcysteine (NAC) is a precursor of glutathione, a potent antioxidant, and a free radical scavenger. The beneficial effect of NAC on nervous system ischemia and ischemia/reperfusion models has been well documented. However, the effect of NAC on nervous system trauma remains less understood. Therefore, we aimed to investigate the therapeutic efficacy of NAC with an experimental closed head trauma model in rats. Thirty-six adult male Sprague–Dawley rats were randomly divided into three groups of 12 rats each: Group I (control), Group II (trauma-alone), and Group III (trauma+NAC treatment). In Groups II and III, a cranial impact was delivered to the skull from a height of 7 cm at a point just in front of the coronal suture and over the right hemisphere. Rats were sacrificed at 2 h (Subgroups I-A, II-A, and III-A) and 12 h (Subgroups I-B, II-B, and III-B) after the onset of injury. Brain tissues were removed for biochemical and histopathological investigation. The closed head trauma significantly increased tissue malondialdehyde (MDA) levels (P<0.05), and significantly decreased tissue superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities (P<0.05), but not tissue catalase (CAT) activity, when compared with controls. The administration of a single dose of NAC (150 mg/kg) 15 min after the trauma has shown protective effect via decreasing significantly the elevated MDA levels (P<0.05) and also significantly (P<0.05) increasing the reduced antioxidant enzyme (SOD and GPx) activities, except CAT activity. In the trauma-alone group, the neurons became extensively dark and degenerated into picnotic nuclei. The morphology of neurons in the NAC treatment group was well protected. The number of neurons in the trauma-alone group was significantly less than that of both the control and trauma+NAC treatment groups. In conclusion, the NAC treatment might be beneficial in preventing trauma-induced oxidative brain tissue damage, thus showing potential for clinical implications.  相似文献   

17.
We investigated the hypothesis that cerebral prostanoid and peptidoleukotriene (LTs) (LTC4/D4/E4/F4) synthesis are increased during postischemic reperfusion of newborn pig brains. Prostanoids and LTs extracted from brain tissue were determined by RIA in sham-control piglets and at 1h, 3h, or 12h after a 20-min period of total cerebral ischemia. During reperfusion following ischemia, all regional brain tissue (cerebrum, brain stem and cerebellum) prostanoids (6-keto-PGF1 alpha, TXB2, PGE2 and PGF2 alpha) were increased at 1h compared with those in sham-control piglets. Only cerebral and brain stem 6-keto-PGF1 alpha and cerebral TXB2 remained elevated at 3h postischemia and all prostanoids returned to control levels by 12h postischemia. Brain tissue LTs were lower than prostanoids and were not altered 1, 3, or 12h following ischemia. These data indicate that 1) newborn pig brain tissue prostanoids are increased initially, and then returned to control levels at later stages of reperfusion following ischemia; 2) LTs are present in newborn pig brain tissue, but are not increased by ischemia/reperfusion injury and therefore probably do not play a significant role in cerebral ischemia-reperfusion injury.  相似文献   

18.
Lymphocyte apoptosis occurs in response to stressors such as thermal injury, trauma, sepsis, and surgery. This study evaluated the effect of a single bout of physical exercise stress on the induction of apoptosis in murine thymocytes and splenic lymphocytes. Female C57BL/6 mice, treadmill exercised at a submaximal intensity (35 m/min, 6% grade) for 90 min or serving as controls (walking on treadmill at 12 m/min, 6% grade, 5 min), were sacrificed 5 min or 120 min after completion of exercise. The percent of apoptotic, necrotic, and viable thymocytes and splenocytes were determined by flow cytometry using annexin V FITC and propidium iodide. There was a significantly higher percent of viable splenocytes in the mice sampled 120 min after cessation of exercise than treadmill control animals (p<0.05). In the thymus, there was a significantly lower percent of apoptotic (p<0.5) and a significantly higher percent of viable (p<0.05) cells in exercised mice sampled at 120 min after exercise relative to controls. Absolute numbers of thymocytes and splenocytes did not differ by exercise treatment condition. Plasma corticosterone levels were elevated immediately after exercise and were negatively correlated with the percent of viable lymphocytes in the spleen. During the time frame sampled, submaximal exercise is associated with a lower % of thymocytes expressing early markers of apoptosis, despite elevated plasma corticosterone levels. Retention of self-reactive, viable thymocytes which would normally be deleted or selective trafficking of apoptotic thymocytes out of the thymus may be involved in the exercise effect. Additional studies are necessary to identify the mechanisms for this shift in proportions of apoptotic and viable cells in lymphoid compartments with exercise.  相似文献   

19.
Effects of a single intraventricular injection of kainic acid (KA) in a dose of 0.1 microgram per rat on the activity of different brain neurotransmitter systems were investigated. A decreased level of norepinephrine at 3 and 24 h and acceleration of its utilization at 3 h after application of KA were observed. These changes were also accompanied by a decreased level of dopamine at 24 h, increased utilization of dopamine at 3 h, increased levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid at 3 and 24 h, as well as by shortened time of the turnover of 5-hydroxytryptamine. No disturbances in the function of the aminergic systems were noted at 120 h after injection of KA. Lowered activity of glutamic acid decarboxylase in the striatum, hippocampus, hypothalamus and cerebellum was observed at 24 h after administration of KA. At 480 h following application of KA, this lowering persisted in the hippocampus only. The most prominent changes in the level of gamma-aminobutyric were observed at 120 h in the striatum, hippocampus and cerebellum. A decreased level of gamma-aminobutyric acid was found in the striatum and cerebellum at 480 h following injection of KA. The observed changes in the dynamic equilibrium between various neurotransmitter systems may be a consequence of the direct or indirect influence of KA.  相似文献   

20.
Endogenous noradrenaline levels are elevated in medulla oblongata, mesencephalon, pons and thalamus of adult rats which had been treated with 6-hydroxydopamine on days 1, 2, 8 and 15 after birth. Levels in spinal cord, cerebellum, hippocampus/amygdala and cortex are depressed, whereas no significant changes are observed in striatum, hypothalamus and medulla spinalis. The rate at which medulla oblongata synthesizes tritiated noradrenaline and dopamine from tritiated tyrosine invitro is markedly enhanced. No effect was apparent on catecholamine synthesis in hypothalamus. Tritiated noradrenaline synthesis, but not tritiated dopamine synthesis, in the cortex is depressed. These results support the view that neonatal 6-hydroxydopamine treatment causes a degeneration of noradrenaline nerve terminals in the cortex and induces an increase in noradrenaline terminals in the medulla oblongata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号