共查询到20条相似文献,搜索用时 0 毫秒
1.
Tsunoda M Kusakabe Y Tanaka N Ohno S Nakamura M Senda T Moriguchi T Asai N Sekine M Yokogawa T Nishikawa K Nakamura KT 《Nucleic acids research》2007,35(13):4289-4300
The specific aminoacylation of tRNA by tyrosyl-tRNA synthetases (TyrRSs) relies on the identity determinants in the cognate tRNATyrs. We have determined the crystal structure of Saccharomyces cerevisiae TyrRS (SceTyrRS) complexed with a Tyr-AMP analog and the native tRNATyr(GΨA). Structural information for TyrRS–tRNATyr complexes is now full-line for three kingdoms. Because the archaeal/eukaryotic TyrRSs–tRNATyrs pairs do not cross-react with their bacterial counterparts, the recognition modes of the identity determinants by the archaeal/eukaryotic TyrRSs were expected to be similar to each other but different from that by the bacterial TyrRSs. Interestingly, however, the tRNATyr recognition modes of SceTyrRS have both similarities and differences compared with those in the archaeal TyrRS: the recognition of the C1-G72 base pair by SceTyrRS is similar to that by the archaeal TyrRS, whereas the recognition of the A73 by SceTyrRS is different from that by the archaeal TyrRS but similar to that by the bacterial TyrRS. Thus, the lack of cross-reactivity between archaeal/eukaryotic and bacterial TyrRS-tRNATyr pairs most probably lies in the different sequence of the last base pair of the acceptor stem (C1-G72 vs G1-C72) of tRNATyr. On the other hand, the recognition mode of Tyr-AMP is conserved among the TyrRSs from the three kingdoms. 相似文献
2.
The universal genetic code is determined by the aminoacylation of tRNAs. In spite of the universality of the code, there are barriers to aminoacylation across taxonomic domains. These barriers are thought to correlate with the co-segregation of sequences of synthetases and tRNAs into distinct taxonomic domains. By contrast, we show here examples of eukaryote-like synthetases that are found in certain prokaryotes. The associated tRNAs have retained their prokaryote-like character in each instance. Thus, co-segregation of domain-specific synthetases and tRNAs does not always occur. Instead, synthetases make adaptations of tRNA-protein contacts to cross taxonomic domains. 相似文献
3.
In vivo incorporation of unnatural amino acids by amber codon suppression is limited by release factor-1-mediated peptide chain termination. Orthogonal ribosome-mRNA pairs function in parallel with, but independent of, natural ribosomes and mRNAs. Here we show that an evolved orthogonal ribosome (ribo-X) improves tRNA(CUA)-dependent decoding of amber codons placed in orthogonal mRNA. By combining ribo-X, orthogonal mRNAs and orthogonal aminoacyl-tRNA synthetase/tRNA pairs in Escherichia coli, we increase the efficiency of site-specific unnatural amino acid incorporation from approximately 20% to >60% on a single amber codon and from <1% to >20% on two amber codons. We hypothesize that these increases result from a decreased functional interaction of the orthogonal ribosome with release factor-1. This technology should minimize the functional and phenotypic effects of truncated proteins in experiments that use unnatural amino acid incorporation to probe protein function in vivo. 相似文献
4.
The genetic code of living organisms has been expanded to allow the site-specific incorporation of unnatural amino acids into proteins in response to the amber stop codon UAG. Numerous amino acids have been incorporated including photo-crosslinkers, chemical handles, heavy atoms and post-translational modifications, and this has created new methods for studying biology and developing protein therapeutics and other biotechnological applications. Here we describe a protocol for reprogramming the amino-acid substrate specificity of aminoacyl-tRNA synthetase enzymes that are orthogonal in eukaryotic cells. The resulting aminoacyl-tRNA synthetases aminoacylate an amber suppressor tRNA with a desired unnatural amino acid, but no natural amino acids, in eukaryotic cells. To achieve this change of enzyme specificity, a library of orthogonal aminoacyl-tRNA synthetase is generated and genetic selections are performed on the library in Saccharomyces cerevisiae. The entire protocol, including characterization of the evolved aminoacyl-tRNA synthetase in S. cerevisiae, can be completed in approximately 1 month. 相似文献
5.
Min Guo 《FEBS letters》2010,584(2):434-227
Known as an essential component of the translational apparatus, the aminoacyl-tRNA synthetase family catalyzes the first step reaction in protein synthesis, that is, to specifically attach each amino acid to its cognate tRNA. While preserving this essential role, tRNA synthetases developed other roles during evolution. Human tRNA synthetases, in particular, have diverse functions in different pathways involving angiogenesis, inflammation and apoptosis. The functional diversity is further illustrated in the association with various diseases through genetic mutations that do not affect aminoacylation or protein synthesis. Here we review the accumulated knowledge on how human tRNA synthetases used structural inventions to achieve functional expansions. 相似文献
6.
Protein synthesis requires accurate charging of tRNA with cognate amino acid as catalyzed by aminoacyl-tRNA synthetases. Crystal structures of tyrosyl-tRNA synthetase (YRSs) show remarkably diverse conformations for the KMSKS loop, hitherto classified as “open” and “closed”. This traditional classification implied that the KMSKS loop adopts different conformations depending on occupancy of active site pocket. Our structural analyses of evolutionarily derived ensemble of differentially ligated YRSs using quantitative structural criterion demonstrate intrinsic conformational heterogeneity in KMSKS loop that is independent of occupancy of active site. Differential centroid distance analyses between KMSKS motif and Rossmann fold domain reveal an intriguing bimodal distribution. These insights have been used for a more consistent re-classification of YRS conformations as either compact or extended. Our data not only reflect inherent dynamics within the conformational landscape of KMSKS loops, but also have implications for structure-based drug design efforts. 相似文献
7.
8.
Foltan JS 《Journal of theoretical biology》2008,253(3):469-482
The genetic code describes translational assignments between codons and amino acids. tRNAs and aminoacyl-tRNA synthetases (aaRSs) are those molecules by means of which these assignments are established. Any aaRS recognizes its tRNAs according to some of their nucleotides called identity elements (IEs). Let a 1Mut-similarity Sim (1Mut) be the average similarity between such tRNA genes whose codons differ by one point mutation. We showed that: (1) a global maximum of Sim (1Mut) is reached at the standard genetic code 27 times for 4 sets of IEs of tRNA genes of eukaryotic species, while it is so only 5 times for similarities Sim (C&R) between all tRNA genes whose codons lie in the same column or row of the code. Therefore, point mutations of anticodons were tested by nature to recruit tRNAs from one isoaccepting group to another, (2) because plain similarities Sim (all) between tRNA genes of species within any of the three domains of life are higher than between tRNA genes of species belonging to different domains, tRNA genes retained information about early evolution of cells, (3) we searched the order of tRNAs in which they were most probably assigned to their codons and amino acids. The beginning Ala, (Val), Pro, Ile, Lys, Arg, Trp, Met, Asp, Cys, (Ser) of our resulting chronology lies under a plateau on a graph of Sim (1Mut,IE)(univ.ancestors) plotted over this chronology for a set S(IE) of all IEs of tRNA genes, whose universal ancestors were separately computed for each codon. This plateau has remained preserved along the whole line of evolution of the code and is consistent with observations of Ribas de Pouplana and Schimmel [2001. Aminoacy1-tRNA synthetases: potential markers of genetic code development. Trends Biochem. Sci. 26, 591-598] that specific pairs of aaRSs-one from each of their two classes-can be docked simultaneously onto the acceptor stem of tRNA and hence an interaction existed between their ancestors using a reduced code, (4) sharpness of a local maximum of Sim (1Mut) at the standard code is almost 100% along our chronologies. 相似文献
9.
10.
Kuratani M Sakai H Takahashi M Yanagisawa T Kobayashi T Murayama K Chen L Liu ZJ Wang BC Kuroishi C Kuramitsu S Terada T Bessho Y Shirouzu M Sekine S Yokoyama S 《Journal of molecular biology》2006,355(3):395-408
Tyrosyl-tRNA synthetase (TyrRS) catalyzes the tyrosylation of tRNA(Tyr) in a two-step reaction. TyrRS has the "HIGH" and "KMSKS" motifs, which play essential roles in the formation of the tyrosyl-adenylate from tyrosine and ATP. Here, we determined the crystal structures of Archaeoglobus fulgidus and Pyrococcus horikoshii TyrRSs in the l-tyrosine-bound form at 1.8A and 2.2A resolutions, respectively, and that of Aeropyrum pernix TyrRS in the substrate-free form at 2.2 A. The conformation of the KMSKS motif differs among the three TyrRSs. In the A.pernix TyrRS, the KMSKS loop conformation corresponds to the ATP-bound "closed" form. In contrast, the KMSKS loop of the P.horikoshii TyrRS forms a novel 3(10) helix, which appears to correspond to the "semi-closed" form. This conformation enlarges the entrance to the tyrosine-binding pocket, which facilitates the pyrophosphate ion release after the tyrosyl-adenylate formation, and probably is involved in the initial tRNA binding. The KMSSS loop of the A.fulgidus TyrRS is somewhat farther from the active site and is stabilized by hydrogen bonds. Based on the three structures, possible structural changes of the KMSKS motif during the tyrosine activation reaction are discussed. We suggest that the insertion sequence just before the KMSKS motif, which exists in some archaeal species, enhances the binding affinity of the TyrRS for its cognate tRNA. In addition, a non-proline cis peptide bond, which is involved in the tRNA binding, is conserved among the archaeal TyrRSs. 相似文献
11.
Zhouqing Luo;Junbiao Dai 《中国科学:生命科学英文版》2025,(3):884-886
<正>Incorporating noncanonical amino acids (nc AAs) beyond these naturally occurring ones into proteins has proven to be a powerful method for modifying their properties, leading to significant advancements in both fundamental and applied sciences. Currently, over 300 nc AAs can be genetically encoded with varying degrees of efficiency. Thus, genetic code expansion(GCE) technology, which extends the range of amino acids available for protein synthesis, represents a major and exciting area of research. A GCE system precisely incorporates nc AAs into proteins using custom-designed orthogonal aminoacyl-t RNA synthetases (aa RSs) and t RNA pairs along with specific codons. 相似文献
12.
13.
Demonstration of two tyrosyl-tRNA synthetases of pea roots 总被引:1,自引:0,他引:1
14.
K Johansson S Ramaswamy C Ljungcrantz W Knecht J Piskur B Munch-Petersen S Eriksson H Eklund 《Nature structural biology》2001,8(7):616-620
Deoxyribonucleoside kinases phosphorylate deoxyribonucleosides and activate a number of medically important nucleoside analogs. Here we report the structure of the Drosophila deoxyribonucleoside kinase with deoxycytidine bound at the nucleoside binding site and that of the human deoxyguanosine kinase with ATP at the nucleoside substrate binding site. Compared to the human kinase, the Drosophila kinase has a wider substrate cleft, which may be responsible for the broad substrate specificity of this enzyme. The human deoxyguanosine kinase is highly specific for purine substrates; this is apparently due to the presence of Arg 118, which provides favorable hydrogen bonding interactions with the substrate. The two new structures provide an explanation for the substrate specificity of cellular deoxyribonucleoside kinases. 相似文献
15.
James R. Brown Frank T. Robb Robert Weiss W. Ford Doolittle 《Journal of molecular evolution》1997,45(1):9-16
Each amino acid is attached to its cognate tRNA by a distinct aminoacyl-tRNA synthetase (aaRS). The conventional evolutionary
view is that the modern complement of synthetases existed prior to the divergence of eubacteria and eukaryotes. Thus comparisons
of prokaryotic and eukaryotic aminoacyl-tRNA synthetases of the same type (charging specificity) should show greater sequence
similarities than comparisons between synthetases of different types—and this is almost always so. However, a recent study
[Ribas de Pouplana L, Furgier M, Quinn CL, Schimmel P (1996) Proc Natl Acad Sci USA 93:166–170] suggested that tryptophanyl- (TrpRS) and tyrosyl-tRNA (TyrRS) synthetases of the Eucarya (eukaryotes) are more
similar to each other than either is to counterparts in the Bacteria (eubacteria). Here, we reexamine the evolutionary relationships
of TyrRS and TrpRS using a broader range of taxa, including new sequence data from the Archaea (archaebacteria) as well as
species of Eucarya and Bacteria. Our results differ from those of Ribas de Pouplana et al.: All phylogenetic methods support
the separate monophyly of TrpRS and TyrRS. We attribute this result to the inclusion of the archaeal data which might serve
to reduce long branch effects possibly associated with eukaryotic TrpRS and TyrRS sequences. Furthermore, reciprocally rooted
phylogenies of TrpRS and TyrRS sequences confirm the closer evolutionary relationship of Archaea to eukaryotes by placing
the root of the universal tree in the Bacteria.
Received: 7 December 1996 / Accepted: 11 February 1997 相似文献
16.
17.
P Schimmel 《Trends in biochemical sciences》1991,16(1):1-3
18.
Background
Synthesis of proteins is based on the genetic code - a nearly universal assignment of codons to amino acids (aas). A major challenge to the understanding of the origins of this assignment is the archetypal "key-lock vs. frozen accident" dilemma. Here we re-examine this dilemma in light of 1) the fundamental veto on "foresight evolution", 2) modular structures of tRNAs and aminoacyl-tRNA synthetases, and 3) the updated library of aa-binding sites in RNA aptamers successfully selected in vitro for eight amino acids. 相似文献19.
Miguel ángel Rubio Mauro Napolitano Jesús?A.?G. Ochoa?de?Alda Javier Santamaría-Gómez Carl J. Patterson Andrew W. Foster Roque Bru-Martínez Nigel J. Robinson Ignacio Luque 《Nucleic acids research》2015,43(20):9905-9917
Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNAThr synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNAThr. Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs. 相似文献