首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The morphology and position of putative neurohemal areas in the peripheral nervous system (ventral nerve cord and retrocerebral complex) of the cricket Gryllus bimaculatus are described. By using antisera to the amines dopamine, histamine, octopamine, and serotonin, and the neuropeptides crustacean cardioactive peptide, FMRFamide, leucokinin 1, and proctolin, an extensive system of varicose fibers has been detected throughout the nerves of all neuromeres, except for nerve 2 of the prothoracic ganglion. Immunoreactive varicose fibers occur mainly in a superficial position at the neurilemma, indicating neurosecretory storage and release of neuroactive compounds. The varicose fibers are projections from central or peripheral neurons that may extend over more than one segment. The peripheral fiber varicosities show segment-specific arrangements for each of the substances investigated. Immunoreactivity to histamine and octopamine is mainly found in the nerves of abdominal segments, whereas serotonin immunoreactivity is concentrated in subesophageal and terminal ganglion nerves. Immunoreactivity to FMRFamide and crustacean cardioactive peptide is widespread throughout all segments. Structures immunoreactive to leucokinin 1 are present in abdominal nerves, and proctolin immunostaining is found in the terminal ganglion and thoracic nerves. Codistribution of peripheral varicose fiber plexuses is regularly seen for amines and peptides, whereas the colocalization of substances in neurons has not been detected for any of the neuroactive compounds investigated. The varicose fiber system is regarded as complementary to the classical neurohemal organs.  相似文献   

2.
Terminal buds on the gill arches of larval Lampetra planeri have been investigated by scanning and transmission electron microscopy. Each terminal bud is composed of two types of elongated cells, which extend from an apical depression to the basal lamina; one type bears a pair of cilia and the other, microvilli. In addition there are peripheral and basal cells. Nerve-fibre profiles are lacking within the terminal bud epithelium and contacts between nerves and ciliated cells are established through holes in the basal lamina. The presence of ciliated receptor cells with such a mode of innervation presents a distinct contrast to the morphology of the taste buds of gnathostome vertebrates.  相似文献   

3.
Segmental and intersegmental muscles of abdominal segments 7–10 are described for adult, male Periplaneta americana (L.) (Dictyoptera : Blattidae). Locations of extrinsic and intrinsic genitalic muscles are documented, and the actions of those associated with the right phallomere are hypothesized. Muscles of the 5 abdominal segments are innervated by branches from 5 pairs of segmental nerves and 3 pairs of transverse nerves. These stem from a terminal synganglion, formed during embryogenesis by fusion of neuromeres of abdominal segments 7–11. One pair of segmental nerves issues from each of the 5 neuromeres, and one pair of transverse nerves arises from neuromeres of abdominal segments 7–9. The nerves are traced to the muscles, integument, and reproductive glands, and their peripheral unions are characterized. Serial homologies of the nerves and muscles are proposed, and comparisons are made with neuromusculature of the female.  相似文献   

4.
Peripheral nerves from aged animals exhibit features of degeneration, including marked fiber loss, morphological irregularities in myelinated axons and notable reduction in the expression of myelin proteins. To investigate how protein homeostatic mechanisms change with age within the peripheral nervous system, we isolated Schwann cells from the sciatic nerves of young and old rats. The responsiveness of cells from aged nerves to stress stimuli is weakened, which in part may account for the observed age-associated alterations in glial and axonal proteins in vivo . Although calorie restriction is known to slow the aging process in the central nervous system, its influence on peripheral nerves has not been investigated in detail. To determine if dietary restriction is beneficial for peripheral nerve health and glial function, we studied sciatic nerves from rats of four distinct ages (8, 18, 29 and 38 months) kept on an ad libitum (AL) or a 40% calorie restricted diet. Age-associated reduction in the expression of the major myelin proteins and widening of the nodes of Ranvier are attenuated by the dietary intervention, which is paralleled with the maintenance of a differentiated Schwann cell phenotype. The improvements in nerve architecture with diet restriction, in part, are underlined by sustained expression of protein chaperones and markers of the autophagy–lysosomal pathway. Together, the in vitro and in vivo results suggest that there might be an age-limit by which dietary intervention needs to be initiated to elicit a beneficial response on peripheral nerve health.  相似文献   

5.
The commissural ring nerve (RN) of the cricket Acheta domesticus links together the two cercal motor nerves of the terminal abdominal ganglion. It contains the axons of almost 100 neurons including two bilateral clusters of eight to 13 ventrolateral neurons and approximately 75 neurons with midline somata within the terminal abdominal ganglion. The ventrolateral neurons have an ipsilateral dendritic arborization within the dorsal neuropil of the ganglion and their axons use the RN as a commissure in order to enter the contralateral nerves of the tenth ganglionic neuromere. In contrast, most midline neurons have bifurcating axons projecting bilaterally into the neuropil of the ganglion as well as into the RN where they often branch extensively before entering the contralateral tenth nerves. Most RN neurons have small, non-spiking somata with spike initiation zones distant from the soma. Many midline neurons also produce double-peaked spikes in their somata, indicative of multiple spike initiation zones. Spontaneous neuronal activity recorded extracellularly from the RN reveals several units, some with variable firing patterns, but none responding to sensory stimuli. The RN is primarily composed of small (50 nm diameter) axon profiles with a few large (0.5-1 microm diameter) profiles. Occasionally, profiles of nerve terminals containing primarily small clear vesicles and a few large dense vesicles are observed. These vesicles can sometimes be clustered about an active zone. We conclude that the primary function of the RN is to serve as a peripheral nerve commissure and that its role as a neurohemal organ is negligible. J. Exp. Zool. 286:350-366, 2000.Copyright 2000 Wiley-Liss, Inc.  相似文献   

6.
The location within the prothoracic ganglion of neurone somata with axons in identified peripheral nerves is examined by the cobalt iontophoresis technique. Axons are filled with cobalt by diffusion through their cut ends and the cobalt is then precipitated as the black sulphide inside the neurone. It is assumed that neurones with axons in peripheral nerves and somata in central ganglia are either motor or neuro-secretory. Fifteen nerves are examined and maps of the location of somata with axons in each nerve are presented. The axon distribution in peripheral nerves of three common inhibitory neurones is described. Dendritic morphology of one common inhibitory neurone and two coxal depressor motoneurones is illustrated. It is proposed that some individual neurones can be reliably identified from their soma dimensions and location within the ganglion. The number of motoneurones with somata in the prothoracic ganglion and their homology with cells in the other thoracic ganglia are discussed.  相似文献   

7.
Summary The ultrastructure of the corneal nerves of the rat was studied in tissue fixed by immersion in and by perfusion with glutaraldehyde-containing fixatives. Of the four types of axonal terminal identified in the nerves, those with the features of adrenergic and cholinergic terminals were confined to the nerves at the limbus and were concentrated in the perivascular plexuses. The remaining two types of terminal were found on axons located in all parts of the cornea and on both intraepithelial axons and axons in the stromal nerves. Of these, one contained the numerous mitochondria which occur in the terminals of axons associated with known mechanoreceptors and the second contained variable and often small numbers of both clear and large dense-cored vesicles. While most of the mitochondria-containing terminals were seen in nerves located near the periphery, vesicle-containing terminals were numerous in all of the nerves, and especially in those in the avascular cornea. In material fixed by immersion in glutaraldehyde-paraformaldehyde, the vesicle-containing terminals appeared to be dilated, but in material fixed by perfusion there was little evidence of any increase in the diameter of the axons in the terminal regions. The structure of the terminals was compared with that of the terminals of axons identified in the nerves of the skin and the urinary tract and the differences in the vesicle content of the terminals to those reported in other studies of the corneal nerves was related to the use of different fixation procedures. The possibility that axons possessing such terminals are identical with the beaded axons and both the cholinesterase-positive and fluorescent axons demonstrated in light microscopical studies of the corneal nerves is discussed, and the widespread distribution of the axons in the cornea is equated with the hypothesis that they are afferent in nature and represent the peripheral receptors for pain impulses.  相似文献   

8.
The structure of peripheral nerves, and the organization of the myoneural junctions in flight muscle fibers of a beetle is described. The uniaxonal presynaptic nerve branches display the "tunicated" structure reported in the case of other insect nerves and the relationship between the axon and the lemnoblast folds is discussed. The synapsing nerve terminal shows many similarities with that of central and peripheral junctions of other insects and of vertebrates (e.g., the intra-axonal synaptic vesicles) but certain important differences have been noted between this region in Tenebrio flight muscle and in other insect muscles. Firstly, the axon discards the lemnoblast before the junction is established and the axon effects a circumferential synapse with the plasma membrane of the fiber, which alone shows the increased thickness often observed in both pre- and postsynaptic elements. Secondly, in addition to the synaptic vesicles within the axon are present, in the immediately adjacent sarcoplasm, great numbers of larger postsynaptic vesicles which, it is tentatively suggested, may represent the sites of storage of the enzymatic destroyer of the activating substance similarly quantized within the intra-axonal vesicles. The spatial relationship between the peripherally located junctions and the portion of the fiber plasma membrane internalized as circumtracheolar sheaths is considered, and the possible significance of this with respect to impulse conduction is discussed briefly.  相似文献   

9.
The regeneration of the adult mammalian central nervous system (CNS) requires changes of the nonpromising environment. Applying peripheral nerve grafts and their extracts are both the useful method to induce regeneration of injured CNS neurites. Our previous reports showed that degeneration of peripheral nerves enhanced their neurotrophic activity in a time-dependent manner. Electrophoretical analysis of proteins obtained from degenerating sciatic nerves revealed significant changes in fractions of low molecular mass. The aim of the present work was to examine the influence of fractionated extracts from 7-day-predegenerated and non-predegenerated peripheral nerves upon injured hippocampal neurites in adult rats. The extracts were closed in fibrin-filled connective tissue chambers (CTC) or within CTC-wrapped polymer hollow fibers (PHF) of 30 kDa cut-off. The cell bodies of regrowing fibers were labeled with FITC-HRP. The CTCs appeared to be useful tool for implantation of artificial grafts into mammalian CNS. Full-spectrum nerve extracts induced strong regeneration of injured hippocampal neurites. The number of labeled cells within hippocampus was significantly lower in PHF groups than in CTC ones, indicating that low-mass proteins present in peripheral nerve extracts are not sufficient to induce successful regeneration.  相似文献   

10.
Visceral nerves have a lot of sensitive conductors of double nature. One of them are presented by dendrites of pseudounipolar cells of cerebrospinal nodes, others - in the form of amyelinic (or, sometimes, fine myelinic) fibres - are axons of peripheral sensitive neurons (of the IId Dogil's type). By means of experimental morphological and electrod physiological analyses performed in 36 dogs, a possible connection of intraenteric neurons of the IId Dogiel's type with the spinal cord is demonstrated, at least with in the level of 5-10 thoracic segments. The centripetal fibres from the jejunum go together with the intestinal, coeliac nerves, intranodular, white and grey connective branches of the sympathetic trunk and, further - with posterior and anterior roots of the cerebrospinal nerves. The coeliac nerves serve as an important collector of the sympathetic afferents along their way from the peritoneal cavity. A part of axons of the peripheral sensitive neurons end in presynaptic buds of a terminal type on the motoneurons in the prevertebral (coeliac plexus) and the paravertebral (thoracic sympathetic trunk) sympathetic ganglia accepting the positoin of the afferent link in the systems of extracentral reflex arcs. Owing to this sign, sensitive cells of the IId Dogiel's type are justly named "sympathetic afferent neurons". Elements of the peripheral (sympathetic) afferent system are remarkable for their diffuse localization, that is corroborated by: an extreme dispersity of trophic centers (cells of the IId Dogiel' type); their axons form synapses with motor cells of numerous and sometimes unstable, individually changeable sympathetic ganglia; transfer of the centripetal sensitive fibres into the spinal cord via posterior and anterior roots.  相似文献   

11.
Molecules localized to the synapse are potential contributors to processes unique to this specialized region, such as synapse formation and maintenance and synaptic transmission. We used an immunohistochemical strategy to uncover such molecules by generating antibodies that selectively stain synaptic regions and then using the antibodies to analyse their antigens. In this study, we utilized a monoclonal antibody, mAb 6D7, to identify and characterize an antigen concentrated at frog neuromuscular junctions and in peripheral nerves. In adult muscle, immunoelectron microscopy indicates that the antigen is located in the extracellular matrix around perisynaptic Schwann cells at the neuromuscular junction and in association with myelinated and nonmyelinated axons in peripheral nerves. The maintenance of the mAb 6D7 epitope is innervation-dependent but is muscle-independent; it disappears from the synaptic region within 2 weeks after denervation, but persists after muscle damage when the nerve is left intact. mAb 6D7 immunolabelling is also detected at the neuromuscular junction in developing tadpoles. Biochemical analyses of nerve extracts indicate that mAb 6D7 recognizes a glycoprotein of 127 kDa with both N- and O-linked carbohydrate moieties. Taken together, the results suggest that the antigen recognized by mAb 6D7 may be a novel component of the synaptic extracellular matrix overlying the terminal Schwann cell. The innervation-sensitivity of the epitope at the neuromuscular junction suggests a function in the interactions between nerves and Schwann cells.  相似文献   

12.
Serial and interval electron micrograph series were used to examine the rostral and anterodorsal nerves of 12.5‐day‐old amphioxus larvae and trace selected fibres to their targets in the nerve cord. The nerves contain a variety of fibre types, including axons from at least two types of epithelial sensory cells and neurites derived from dorsal (Retzius) bipolar cells located within the cord. The rostral epithelial cells form basal synapses with a population of peripheral neurites that probably derive from the dorsal bipolar cells, though other sources are possible. Varicosities containing dense‐core vesicles occur at the tip of the rostrum, indicating the presence of efferent innervation at this site. Within the cord, some peripherally derived rostral afferents terminate at the level of the anterior cerebral vesicle, others synapse directly with both motoneurones and the notochord, but those in the largest bundle target the dendrites of the large paired neurones (LPNs) located in the primary motor centre. LPN dendrites also receive synapses from sensory fibres arriving via the anterodorsal nerves, from the anterior‐most of the dorsal bipolar cells, referred to here as tectal cells, and from a single fibre derived from the frontal eye. This convergence of multiple inputs accords with other evidence that the LPNs are key intermediaries in the sensorimotor pathway that activates the larval escape response. The rostral nerves are much larger at metamorphosis, but the ventral tracts that derive from them are still comparatively small. This is because the majority of rostral fibres are diverted into a late‐developing dorsal tract that travels within the cord to the front end of the dorsolateral neuropile, where most of its fibres disperse and form synapses. The positioning of the dorsal and ventral tracts strongly suggests homology with vertebrate olfactory and terminal nerves, respectively. This, and the question of whether the amphioxus central nervous system has anything comparable to the olfactory bulb, a telencephalic structure, is discussed.  相似文献   

13.
The non-typeable Haemophilus influenzae strain DH1 was isolated from a 25 year old male patient with Fisher syndrome, a postinfectious autoimmune condition characterized by the presence of anti-GQ1b IgG antibodies that target and initiate damage to peripheral nerves. DH1 was found to display an alphaNeuAc(2-8)alphaNeuAc(2-3)betaGal branch bound to the tetraheptosyl backbone core of its lipooligosaccharide (LOS). The novel sialylation pattern was found to be dependent on the activity of a bifunctional sialyltransferase, Lic3B, which catalyzes the addition of both the terminal and subterminal sialic acid residues. Patient serum IgGs bind to DH1 LOS, and the reactivity is significantly influenced by the presence of sialylated glycoforms. The display by DH1, of a surface glycan that mimics the terminal trisaccharide portion of disialosyl-containing gangliosides, provides strong evidence for its involvement in the development of Fisher syndrome.  相似文献   

14.
The spleen of the American alligator (Alligator mississippiensis) was studied histologically. The alligator spleen is a bean-shaped organ covered by a thick capsule. The concave side of the spleen faces the pancreas. Many venous vessels are present in the capsule. The stem segment of a large intestinal artery, the lieno-intestinal artery, enters the organ from its upper pole, runs within the organ at the axial center (axial artery) and leaves it from the lower pole. Many peripheral branches originate from the axial artery towards the capsule, but the artery has no associated collateral veins. The capsule/trabecula and white and red pulp may be distinguished. The capsular veins appear to be continuous with venous vessels that sheathe the axial artery and its peripheral branches. Surrounding the axial artery are trabeculae containing leiomyocytes and nerves. The white pulp consists of lymphoid tissue and occurs around terminal arterioles and sheathed capillaries. The materials examined do not show germinal centers. The large red pulp is composed of venous vessels and splenic cords rich in reticular fibers. Two venous routes, hilar and capsular, are present. The structural characteristics of the alligator spleen are similar to spleens of other reptiles; however, its vascular architecture is primitive, suggesting that the alligator spleen may be a portal spleen. J Morphol 233:43–52, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
用液氮骤冻造成大白鼠交感节前神经变性后,通过神经末梢乙酰胆碱含量、胆碱酯酶活性测定以及电刺激交感干时外周反应等研究其再生规律。结果表明冻伤后3周内再生过程进展迅速,神经结构与功能均有相当程度的恢复;3周后再生过程转慢,直至一年时各指标仍远未达到正常。这证明交感节前神经的再生过程不同于中枢及其它外周神经而独具特征。  相似文献   

16.
Summary Central projections of afferents from the lateral line nerves and from the individual branches of the VIIIth cranial nerve in Xenopus laevis and Xenopus mülleri were studied by the application of HRP to the cut end of the nerves.Upon entering the rhombencephalon, the lateral line afferents form a longitudinal fascicle of ascending and descending branches in the ventro-lateral part of the lateral line neuropile. The fascicle exhibits a topographic organization, that is not reflected in the terminal field of the side branches. The terminal field can be subdivided into a rostral, a medial and a caudal part, each of which shows specific branching and terminal pattern of the lateral line afferents. These different patterns within the terminal field are interpreted as the reflection of functional subdivisions of the lateral line area. The study did not reveal a simple topographic relationship between peripheral neuromasts and their central projections.Two nuclei of the alar plate with significant lateral line input were delineated: the lateral line nucleus (LLN) and the medial part of the anterior nucleus (AN). An additional cell group, the intermediate nucleus (IN), is a zone of lateral line and eighth nerve overlap, although such zones also exist within the ventral part of the LLN and the dorsal part of the caudal nucleus (CN). Six nuclei which receive significant VIIIth nerve input are recognized: the cerebellar nucleus (CbN), the lateral part of the anterior nucleus, the dorsal medullary nucleus (DMN), the lateral octavus nucleus (LON), the medial vestibular nucleus (MVN) and the caudal nucleus (CN).All inner ear organs have more than one projection field. All organs project to the dorsal part of the LON and the lateral part of the AN. Lagena, amphibian papilla and basilar papilla project to separate regions of the dorsal medullary nucleus (DMN). There is evidence for a topographic relation between the hair cells of the amphibian papilla (AP) and the central projections of AP fibers. The sacculus projects extensively to a region between the DMN and the LON. Fibers from the sacculus and the lagena project directly to the superior olive. Fibers from the utriculus and the three crista organs terminate predominantly in the medial vestibular nucleus (MVN) and in the adjacent parts of the reticular formation, and their terminal structures appear to be organotopically organised. Octavus fiber projections to the cerebellum and to the spinal cord are also described.  相似文献   

17.
The central nervous system (CNS), unlike the peripheral nervous system (PNS), is an immune-privileged site in which local immune responses are restricted. Whereas immune privilege in the intact CNS has been studied intensively, little is known about its effects after trauma. In this study, we examined the influence of CNS immune privilege on T cell response to central nerve injury. Immunocytochemistry revealed a significantly greater accumulation of endogenous T cells in the injured rat sciatic nerve than in the injured rat optic nerve (representing PNS and CNS white matter trauma, respectively). Use of the in situ terminal deoxytransferase-catalyzed DNA nick end labeling (TUNEL) procedure revealed extensive death of accumulating T cells in injured CNS nerves as well as in CNS nerves of rats with acute experimental autoimmune encephalomyelitis, but not in injured PNS nerves. Although Fas ligand (FasL) protein was expressed in white matter tissue of both systems, it was more pronounced in the CNS. Expression of major histocompatibility complex (MHC) class II antigens was found to be constitutive in the PNS, but in the CNS was induced only after injury. Our findings suggest that the T cell response to central nerve injury is restricted by the reduced expression of MHC class II antigens, the pronounced FasL expression, and the elimination of infiltrating lymphocytes through cell death.  相似文献   

18.
The projection of peripheral sensory and motor nerves was investigated in the pigeon (Columba livia) by means of retrogradely transported fluorescent dyes. Two combinations of fluorescent tracers were used that could be identified within the same cell when excited by light of 405 nm: 1) Propidium iodide and Bisbenzimide, which label the cytoplasm orange and the nucleus blue, respectively; 2) Fast Blue, which labels the cytoplasm blue, and Nuclear Yellow, which labels the nucleus (especially the nucleolar ring) yellow. The presence of the tracers in a given cell was confirmed microspectrophotometrically. Following injection of the tracers into peripheral nerves, labelled sensory neurones were seen in the dorsal root ganglia and motoneurones of the spinal cord. The peroneal and tibial nerves projected to L2-L5 and L2-L7, respectively, whereas the median and ulnar nerves projected to C12-Th2 and C13-Th1. Double-labelled sensory neurones were observed when both peroneal and tibial, or median and ulnar nerves were injected with different tracers. This indicates that some sensory neurones possess peripheral processes that dichotomize to pass down two different peripheral nerves. Double labelling was never seen in motoneurones, or in sensory neurones after tracer injection into the sciatic and femoral nerves.  相似文献   

19.
In the vasoactive intestinal polypeptide (VIP)-rich lumbosacral spinal cord, VIP increases at the expense of other neuropeptides after primary sensory nerve axotomy. This study was undertaken to ascertain whether similar changes occur in peripherally axotomised cranial sensory nerves. VIP immunoreactivity increased in the terminal region of the mandibular nerve in the trigeminal nucleus caudalis following unilateral section of the sensory root of the mandibular trigeminal nerve at the foramen orale. Other primary afferent neuropeptides (substance P, cholecystokinin and somatostatin) were depleted and fluoride-resistant acid phosphatase activity was abolished in the same circumscribed areas of the nucleus caudalis. The rise in VIP and depletion of other markers began 4 days postoperatively and was maximal by 10 days, these levels remaining unchanged up to 1 year postoperatively. VIP-immunoreactive cell bodies were absent from trigeminal ganglia from the unoperated side but small and medium cells stained intensely in the ganglia of the operated side after axotomy. These observations indicate that increase of VIP in sensory nerve terminals is a general phenomenon occurring in both cranial and spinal sensory terminal areas. The intense VIP immunoreactivity in axotomised trigeminal ganglia suggests that the increased levels of VIP in the nucleus caudalis are of peripheral origin, indicating a change in expression of neuropeptides within primary afferent neurons following peripheral axotomy.  相似文献   

20.
A modified Sihler's stain technique was used to visualize the branching patterns of oculomotor and trochlear nerves. The levator palpebrae, superior rectus, inferior rectus, medial rectus, inferior oblique, superior oblique and tensor trochlea muscles were isolated from the eyes of normal rabbits and processed using modified Sihler's technique. The distributions and terminal ramifications of the oculomotor and trochlear nerves were observed. Two distinct divisions and terminal branches of the oculomotor nerve were shown in detail together with the trochlear nerve distribution. The application of Sihler's technique enables researchers to trace nerve branching within relatively transparent muscles, whereas the nerve fibers are counterstained and clearly visible. This technique could be useful for detailed studies of the motor control of extraocular muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号