首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used sedimentation in alkali to estimate the repair of X-ray-induced single strand breaks in the DNA of irradiated toluenized Escherichia coli cells. Extensive repair requires no exogenous cofactors except ATP although other individual NTPs (except U) or dNTPs can substitute for ATP. There is no repair in polA or resA cells and since nicotinamide mononucleotide (NMN) inhibits repair in wild type cells we interpret the results as indicating that both ligase and polymerase I are needed for repair but that the amount of any gap filling is small and extensive repair replication is not necessary.  相似文献   

2.
Ultraviolet irradiation of Escherichia coli stimulates non-conservative DNA synthesis in cells rendered permeable to nucleoside triphosphates by treatment with toluene. This synthesis, like semi-conservative replication, proceeds in the presence of millimolar concentrations of ATP. Unlike semi-conservative replication, the ultraviolet-stimulated DNA synthesis can proceed if other nucleoside triphosphates are substituted for ATP. The selective dependence of semi-conservative replication upon ATP has been used to study the repair mode of synthesis in the absence of the semi-conservative mode and to demonstrate the dependence of ultraviolet-stimulated synthesis upon the uvrA gene product. Studies with recB mutants show that the nucleoside triphosphate-dependent ultravioletstimulated DNA synthesis occurs in strains deficient in the RecBC deoxyribonuclease.  相似文献   

3.
Small patch repair in ultraviolet-irradiated Escherichia coli is saturated at deoxyrmcleoside triphosphate concentrations (~ 2 μm of each dNTP) that are severely limiting for DNA replication. The low requirement of the repair process for dNTPs permits direct demonstration of u.v.-induced DNA synthesis by incorporation of labeled dNTP and determination of its extent, base composition and patch size.It is concluded that DNA polymeraso 1 is involved in small patch repair and that an average of 13 to 16 nucleotides are re-inserted per pyrimidine dimer excised. The average base composition of the repaired stretches adjacent to the dimers is similar to that of total E. coli DNA.An assay utilizing endogenous u.v.-specific endonuclease to determine dimer excision is described.  相似文献   

4.
Genetic analysis of double-strand break repair in Escherichia coli.   总被引:4,自引:1,他引:4       下载免费PDF全文
We had reported that a double-strand gap (ca. 300 bp long) in a duplex DNA is repaired through gene conversion copying a homologous duplex in a recB21 recC22 sbcA23 strain of Escherichia coli, as predicted on the basis of the double-strand break repair models. We have now examined various mutants for this repair capacity. (i) The recE159 mutation abolishes the reaction in the recB21C22 sbcA23 background. This result is consistent with the hypothesis that exonuclease VIII exposes a 3'-ended single strand from a double-strand break. (ii) Two recA alleles, including a complete deletion, fail to block the repair in this recBC sbcA background. (iii) Mutations in two more SOS-inducible genes, recN and recQ, do not decrease the repair. In addition, a lexA (Ind-) mutation, which blocks SOS induction, does not block the reaction. (iv) The recJ, recF, recO, and recR gene functions are nonessential in this background. (v) The RecBCD enzyme does not abolish the gap repair. We then examined genetic backgrounds other than recBC sbcA, in which the RecE pathway is not active. We failed to detect the double-strand gap repair in a rec+, a recA1, or a recB21 C22 strain, nor did we find the gap repair activity in a recD mutant or in a recB21 C22 sbcB15 sbcC201 mutant. We also failed to detect conservative repair of a simple double-strand break, which was made by restriction cleavage of an inserted linker oligonucleotide, in these backgrounds. We conclude that the RecBCD, RecBCD-, and RecF pathways cannot promote conservative double-strand break repair as the RecE and lambda Red pathways can.  相似文献   

5.
The involvement of signal transduction in the repair of radiation-induced damage to DNA has been known in eukaryotes but remains understudied in bacteria. This article for the first time demonstrates a role for the periplasmic lipoprotein (YfgL) with protein kinase activity transducing a signal for DNA strand break repair in Escherichia coli. Purified YfgL protein showed physical as well as functional interaction with pyrroloquinoline-quinone in solution and the protein kinase activity of YfgL was strongly stimulated in the presence of pyrroloquinoline-quinone. Transgenic E. coli cells producing Deinococcus radiodurans pyrroloquinoline-quinone synthase showed nearly four log cycle improvement in UVC dark survival and 10-fold increases in gamma radiation resistance as compared with untransformed cells. Pyrroloquinoline-quinone enhanced the UV resistance of E. coli through the YfgL protein and required the active recombination repair proteins. The yfgL mutant showed higher sensitivity to UVC, mitomycin C and gamma radiation as compared with wild-type cells and showed a strong impairment in homologous DNA recombination. The mutant expressing an active YfgL in trans recovered the lost phenotypes to nearly wild-type levels. The results strongly suggest that the periplasmic phosphoquinolipoprotein kinase YfgL plays an important role in radiation-induced DNA strand break repair and homologous recombination in E. coli.  相似文献   

6.
7.
Role of Elg1 protein in double strand break repair   总被引:3,自引:1,他引:3  
The inaccurate repair of DNA double-strand breaks (DSBs) can result in genomic instability, and additionally cell death or the development of cancer. Elg1, which forms an alternative RFC-like complex with RFC2-5, is required for the maintenance of genome stability in Saccharomyces cerevisiae, and its function has been linked to DNA replication or damage checkpoint response. Here, we show that Elg1 is involved in homologous recombination (HR)-mediated DSB repair. Mutants of elg1 were partially defective in HR induced by methylmethanesufonate (MMS) and phleomycin. Deletion of ELG1 resulted in less efficient repair of phleomycin-induced DSBs in G2/M phase-arrested cells. During HR between MAT and HML loci, Elg1 associated with both the MAT locus near the HO endonuclease-induced DSB site, and the HML homologous donor locus. The association of Elg1 with the MAT locus was not dependent on Rad52. However, Elg1 association with the HML locus depended on Rad52. Importantly, we found that two of the later steps in HR-mediated repair of an HO endonuclease-induced DSB, primer extension after strand invasion and ligation, were less efficient in elg1 mutants. Our results suggest that Elg1 is involved in DSB repair by HR.  相似文献   

8.
Cyclic adenosine 5'-monophosphate in Escherichia coli.   总被引:11,自引:2,他引:9       下载免费PDF全文
  相似文献   

9.
The survival of V79 Chinese hamster lung cells exposed to X-irradiation is reduced by co-treatment with cordycepin (3'-deoxyadenosine). This reduction is manifested principally by a decrease in the D0 of the X-ray survival curve from 199 rad in untreated cells to 106 rad in cordycepin-treated cells. Reduced survival is seen throughout the life-cycle when synchronized cell populations are exposed to both agents with cells in mid-S being especially sensitive.  相似文献   

10.
11.
12.
Chemical mutagens generally cause nucleotide pool imbalance. We postulated that this effect might enhance the mutagenic effect by reducing the accuracy of DNA-repair synthesis. We used an inducer of DNA repair which causes minor pool modifications, namely UV light, and imbalanced the nucleotide pools by incubating UV-irradiated V79 cells with thymidine or deoxycytidine (10(-5)-10(-2) M) during the early phases of repair. The effects on pool sizes of the incubation with deoxynucleosides were determined by directly measuring the 4 deoxynucleoside triphosphates in cell extracts. The impairment of repair accuracy was evaluated by comparing the frequency of mutations at the HGPRT locus (induction of resistance to 6TG) in irradiated cells incubated with deoxynucleosides or allowed to carry on repair synthesis in nucleoside-free medium. Despite the marked imbalance of pyrimidine nucleotide pools, an increase of mutations was observed only with the highest concentrations of thymidine and deoxycytidine. Such an increase was much lower than that reported in the case of facilitation by excess nucleosides of chemically induced mutagenesis. The results indicate that UV-induced repair is scarcely affected by precursor biases.  相似文献   

13.
Freeze-drying of Escherichia coli cells caused strand breaks of deoxyribonucleic acid (DNA) in both radiation-sensitive and -resistant strains. However, in the radiation-resistant strain E. coli B/r the damaged DNA was repaired after rehydration, whereas in the radiation-sensitive strain E. coli Bs-1 the damaged DNA was not repaired and the DNA was degraded. Repeated freeze-drying did not break the damaged DNA into smaller pieces.  相似文献   

14.
15.
Uptake of adenosine 5'-monophosphate by Escherichia coli.   总被引:18,自引:14,他引:4       下载免费PDF全文
Adenosine 5'-monophosphate is dephosphorylated before its uptake by cells of Escherichia coli. This is demonstrated by using a radioactive double-labeled culture, and with a 5'-nucleotidase-deficient, mutant strain. The adenosine formed is further phosphorolyzed to adenine as a prerequisite for its uptake and incorporation. The cellular localization of the enzymes involved in the catabolism of adenosine 5'-monophosphate is discussed.  相似文献   

16.
Akamatsu Y  Jasin M 《PLoS genetics》2010,6(10):e1001160
In fission yeast, the Swi5-Sfr1 complex plays an important role in homologous recombination (HR), a pathway crucial for the maintenance of genomic integrity. Here we identify and characterize mammalian Swi5 and Sfr1 homologues. Mouse Swi5 and Sfr1 are nuclear proteins that form a complex in vivo and in vitro. Swi5 interacts in vitro with Rad51, the DNA strand-exchange protein which functions during HR. By generating Swi5(-/-) and Sfr1(-/-) embryonic stem cell lines, we found that both proteins are mutually interdependent for their stability. Importantly, the Swi5-Sfr1 complex plays a role in HR when Rad51 function is perturbed in vivo by expression of a BRC peptide from BRCA2. Swi5(-/-) and Sfr1(-/-) cells are selectively sensitive to agents that cause DNA strand breaks, in particular ionizing radiation, camptothecin, and the Parp inhibitor olaparib. Consistent with a role in HR, sister chromatid exchange induced by Parp inhibition is attenuated in Swi5(-/-) and Sfr1(-/-) cells, and chromosome aberrations are increased. Thus, Swi5-Sfr1 is a newly identified complex required for genomic integrity in mammalian cells with a specific role in the repair of DNA strand breaks.  相似文献   

17.
18.
Accurate repair of DNA double-strand breaks (DSBs) is crucial for cell survival and genome integrity. In Escherichia coli, DSBs are repaired by homologous recombination (HR), using an undamaged sister chromosome as template. The DNA intermediates of this pathway are expected to be branched molecules that may include 4-way structures termed Holliday junctions (HJs), and 3-way structures such as D-loops and repair forks. Using a tool creating a site-specific, repairable DSB on only one of a pair of replicating sister chromosomes, we have determined how these branched DNA intermediates are distributed across a DNA region that is undergoing DSB repair. In cells, where branch migration and cleavage of HJs are limited by inactivation of the RuvABC complex, HJs and repair forks are principally accumulated within a distance of 12 kb from sites of recombination initiation, known as Chi, on each side of the engineered DSB. These branched DNA structures can even be detected in the region of DNA between the Chi sites flanking the DSB, a DNA segment not expected to be engaged in recombination initiation, and potentially degraded by RecBCD nuclease action. This is observed even in the absence of the branch migration and helicase activities of RuvAB, RadA, RecG, RecQ and PriA. The detection of full-length DNA fragments containing HJs in this central region implies that DSB repair can restore the two intact chromosomes, into which HJs can relocate prior to their resolution. The distribution of recombination intermediates across the 12kb region beyond Chi is altered in xonA, recJ and recQ mutants suggesting that, in the RecBCD pathway of DSB repair, exonuclease I stimulates the formation of repair forks and that RecJQ promotes strand-invasion at a distance from the recombination initiation sites.  相似文献   

19.
20.
Ribosome synthesis in Escherichia coli treated with 5-fluorouracil   总被引:2,自引:0,他引:2  
D C Hills  J Horowitz 《Biochemistry》1966,5(5):1625-1632
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号