首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were performed with cultured excised primary root tips of Vicia faba ‘Longpod’ to determine: (1) the proportion of meristematic cells arrested in Gl and in G2 during carbohydrate starvation, and to determine if the proportion is fixed or can be varied experimentally; (2) the effect of increased starvation on the ability of arrested cells in Gl and G2 to initiate DNA synthesis and mitosis, respectively, when exogenous sucrose was supplied; and (3) whether puromycin, cycloheximide, or actinomycin D prevented the initiation of DNA synthesis and the onset of mitosis. Microspectrophotometry of nuclear DNA and autoradiographic measurements of incorporated 3H-thymidine showed that 72 hr of starvation immediately after excision produced tissue with more than 70 % of the cells arrested in G2 and less than 30 % in Gl. If cultured for three days and then starved for 72 hr, the tissue had nearly equal numbers of cells arrested in Gl and G2. As the duration of starvation increased, the time required to initiate DNA synthesis and to divide when carbohydrate was replenished also increased. Inhibition of protein synthesis by puromycin and cycloheximide prevented the initiation of DNA synthesis and mitosis, but actinomycin D, an inhibitor of RNA synthesis, did not prevent division of cells from G2 nor DNA synthesis by cells from Gl. The experiments demonstrated that the mitotic cycle of Vicia has two major controls, one in Gl and another in G2, and that other factors determine how many cells are affected by either of these cycle controls.  相似文献   

2.
Following provision of sucrose to starved, stationary phase pea root meristems, G1 and G2 cells enter DNA synthesis and mitosis, respectively. Puromycin (450 μg/ml) and cycloheximide (5 μg/ml) completely prevent this initiation of progression through the cell cycle. Actinomycin D (10 μg/ml) has no effect on the initial entry of G1 and G2 cells into S and mitosis, although later entry is prevented. The resistance of the cells to actinomycin D is lost slowly with time in medium without sucrose, suggesting that an RNA required for the resumption of proliferative activity is being gradually lost. The effects of the inhibitors on transitional and proliferative phase meristem cells indicate that such dividing cells do indeed have sufficient of the requisite RNA for 8-12 hr progression through the cycle, but that protein synthesis is required continuously. It is suggested that this RNA is the one lost slowly during starvation, allowing starved cells to reinitiate progression through the cycle in the presence of actinomycin D.  相似文献   

3.
When cycloheximide is added to (B12)-deficient cultures before or after replenishment of the cells with B12, reversion of these cells is inhibited. This inhibition is not caused by interference of the inhibitor in the uptake of B12 as measured by division kinetics. Cycloheximide does not inhibit the initial increase in the rate of DNA synthesis caused by B12 replenishment, but within 30–45 min the rate decreases and DNA synthesis ceases. Cycloheximide added to replenished deficient cells after completion of DNA duplication inhibits cell division. The total cellular protein and RNA in replenished cells treated with cycloheximide does not change. B12 added to deficient cells does not stimulate the incorporation of [14C]leucine into protein during resumption and completion of DNA duplication. However, there is a large increase in [14C]leucine incorporation into the protein of these cells soon after completion of DNA duplication and before resumption of cell division. The addition of cycloheximide to B12-replenished or to nonreplenished deficient cells rapidly inhibits the incorporation. We suggest that the addition of B12 accelerates the rate of DNA synthesis in the deficient cells and that possibly no new protein synthesis is required except for mitosis. However, protein synthesis is needed for continuous DNA synthesis.  相似文献   

4.
Analysis of the effects of actinomycin and puromycin on the G2 and mitotic parts of the life cycle in Chinese hamster ovary cells grown in suspension and synchronized by thymidine treatment has been carried out. Rates of division of partially synchronized cell populations were measured in the presence and absence of the drugs, and various controls were performed to test for absence of complex side effects. Actinomycin produces a block 1.9 hr before completion of division, while puromycin produces a block almost coinciding with the initiation of mitosis. Evidence is presented that the puromycin block may be a double one, inhibiting one kind of protein synthesis that virtually coincides with the beginning of mitosis and another that occurs about 8 min earlier. The data are interpreted in terms of the time interval between messenger formation and its associated protein synthesis in this region of the life cycle. The various events studied have been provisionally mapped in the G2 and mitotic periods of the life cycle.  相似文献   

5.
The cell kinetics of recurrent growth of the murine JB-1 ascites tumour have been investigated 0 hr and 24 hr after aspiration of the main part of the tumour in the plateau phase of growth. The experimental data: growth curve, percentage of labelled mitoses curve and continuous labelling curves combined with cytophotometric determination of single-cell DNA content were analysed using two alternative mathematical models for the cell kinetics. Investigations 24 hr after aspiration showed that the doubling time had decreased to 70 hr as compared with 240 hr in the plateau tumour. This was due to a release of non-proliferating cells into the cell cycle, resulting in an increase in the growth fraction from 44% to 72%. The decrease in the doubling time was also due to a shortening of the mean cell cycle time from 41 to 20.5 hr. The analysis rendered it likely that the aspiration caused a shift in the mode of cell loss from an age-specific elimination of old non-cycling cells with post-mitotic DNA content in the plateau tumour to an elimination of younger cells immediately after mitosis. Investigations from 0 to 10 hr after aspiration verified the release of non-proliferating cells with both G1 and G2 DNA content into the cell cycle. The release was initiated from 3 to 6 hr after aspiration. 24 hr after aspiration the experimental data did not indicate any further transition.  相似文献   

6.
EFFECT OF METHOTREXATE ON THE CELL CYCLE OF L1210 LEUKEMIA   总被引:1,自引:0,他引:1  
The influence of methotrexate (MTX) on the proliferative activity of cells in different phases of cell cycle has been studied. MTX (5 mg/kg) was injected i.p. 3 days after the inoculation of 5 × 106 leukemia cells into F1 (DBA × C57 BL) mice. It was shown that MTX causes degeneration of cells, being in G1- as well as in S-phase at the time of drug injection. Incorporation of 3H-TdR was suppressed for a period ranging from 2 to 12 hr after MTX administration, which is demonstrated by the decrease in the number of grains per cell. The number of cells labeled after 3H-TdR injection was also sharply decreased during this period. For a period of 3 until 15 hr after MTX administration the mitotic index decreased significantly as a result of inhibition of DNA synthesis. The blocking of the G1-S transition was evident during 4 hr after MTX. Thereafter the G1-S transition proceeds at a rate which is practically equal to that for nontreated controls. MTX did not inhibit transition to mitosis of cells being in G2-phase and in a very late S-phase at the time of drug injection. The sensitivity of G1-cells to the cytocidal effect of MTX shows that for L1210 leukemia cells MTX can be classified as a cycle-specific drug killing both G1 and S-cells rather than S-phase specific agent with self-limitation.  相似文献   

7.
Glucocorticoids induce an alteration of the surface of hepatoma tissue culture (HTC) cells as expressed by changes in cell electrophoretic, antigenic, and adhesive properties. The alteration is assayed by the increased adhesiveness of induced cells for a glass surface. The induction process has a lag period of about 3 hr and attains a plateau level after 24–30 hr when 50–80% of the steroid-treated cells are firmly adhered. Less than 10% of untreated cells adhere under the same conditions. Induction is inhibited by actinomycin D and cycloheximide, demonstrates both pH and temperature dependence, and responds to changes in steroid concentration and structure. By contrast, the attachment per se of preinduced cells is not affected by inhibitors of RNA and protein synthesis, fluctuations of temperature and pH, and the presence or absence of the hormone. When the induction process is reversed by removal of steroid or addition of actinomycin D, preinduced adhesiveness is lost with a half-life of 13–24 hr, but in the presence of cycloheximide the loss is accelerated (t1/2 3–5.5 hr). These results suggest that glucocorticoids induce the biosynthesis of a protein which either modifies the cell surface (an enzyme) or is incorporated into surface structures (structural protein).  相似文献   

8.
Chinese hamster ovary (CHO) cells, synchronized by selective detachment at mitosis, were treated with various concentrations of actinomycin D (AMD) or cycloheximide (CHX) either immediately, or 1, 2, or 3 hr after mitosis. Since the minimum duration of G1 phase in these cultures was 3.4 hr, the addition of RNA or protein synthesis inhibitors took place at the beginning, first third, second third, or end (G1–S boundary) of G1 phase. The kinetics of exit from G1 phase, the rate and extent of traverse of S phase, and the reaccumulation of RNA were estimated under each set of growth conditions by flow cytometry of acridine orange-stained cells. A mathematical model was constructed to describe the trajectories of the cell populations with respect to their increase in RNA and DNA content in the absence or presence of the inhibitor. The chronologic synchrony imposed on the CHO cell population began to decay within 3 hr, resulting in stochastic entrance of cells into S phase in the absence of inhibitor. Addition of AMD or CHX at 0, 1, 2, or 3 hr after mitosis, regardless of the inhibitor concentration, did not provide evidence of a critical restriction point in G1 beyond which cells were committed to enter S phase and were no longer sensitive to moderate suppression of RNA or protein synthesis. The observed kinetics of cell entrance into and traverse of S phase were consistent with an inherently heterogenous response to serum stimulation occurring at or just after cell division.  相似文献   

9.
MITOSIS AND THE PROCESSES OF DIFFERENTIATION OF MYOGENIC CELLS IN VITRO   总被引:31,自引:20,他引:11       下载免费PDF全文
The relation between the mitotic cycle and myoblast fusion has been studied in chick skeletal muscle in vitro. The duration of the cell cycle phases was the same in both early and late cultures. By tracing a cohort of pulse-labeled cells, it was found that myoblast fusion does not occur in S, G2, or M. Cell surface alterations required for fusion are dependent upon the position of the cell in the division cycle. In early cultures, fusion takes place only after a minimum delay of 5 hr from the time the cell has entered G1. The mitosis preceding fusion may condition the cell for the abrupt shift in synthetic activity that occurs in the subsequent G1. In older cultures fusion of labeled cells is diminished. Two factors account for the cessation of fusion in older cultures. First, the number of myogenic stem cells declines, but these cells do not disappear as the cultures mature. Their persistence was demonstrated by labeling dividing mononucleated cells in older cultures and challenging them with nascent myotubes. Some of these labeled cells were incorporated into the forming myotubes. Second, a block to fusion develops during myotube maturation. Well developed myotubes challenged with labeled competent myogenic cells failed to incorporate the labeled nuclei.  相似文献   

10.
The growth kinetics of an established human lymphoma cell line were analyzed by a variety of techniques utilizing various cell inocula (5 x 104 - 5 x 105 cells) dispensed into 60 mm diameter dishes. Techniques included pulse-labeled mitosis (PLM), continuous labeling with 3H-TdR, time-lapse photography (TLP), cell counts by electronic particle counter, and DNA histography obtained by pulse cytophotometry (PCP). There were no significant differences among values determined for any kinetic parameters as a function of cell concentration. the average doubling time of exponentially growing cells, regardless of cell inoculum, was 44.1 hr. the generation time determined by PLM was 31.1 hr with a SD of 4.7 hr. Transit times for each stage were: TG1= 10.6 hr, Ts= 9.9 hr, TG2= 9.9 hr, and Tm= 0.7 hr. Repeated experiments using continuous labeling with 3H-TdR demonstrated a TG2 of 6.3 hr. the longer value determined by PLM is possibly due to the technical manipulations of this procedure which may delay pulse-labeled cells from resuming cell cycle transit. Hence, values for cell cycle stages were recalculated to give TG1= 14.1 hr, Ts= 9.9 hr, TG2 = 6.3 hr, and Tm= 0.7 hr. These results were used to compute the size of each cell cycle stage compartment pool and corresponded very closely to values defined directly by PCP. TLP analysis considered only cells that produced colonies of at least thirty-two cells. Generation times ranged from 8 to 89 hr and showed a positive skewness. the average value measured for 330 divisions was 34.5 hr with a SD of 13.2 hr. Thus, the variance predicted by curve fitting of the PLM data did not correlate with that defined by time-lapse photography nor did it encompass the range in generation times observed directly by TLP. There was a positive correlation between sister-sister cell generation times (+0.66) but no relation was noted for mother-daughter values.  相似文献   

11.
The effect of RBC transfusion and erythropoietin (EPO) on the proliferation of immature erythrocyte progenitors was studied in the spleens of RBC transfused, lethally irradiated mice injected with bone marrow. Transfusion decreased expansion of the progenitors and slowed their proliferation: the mean cycle time as measured by per cent labelled mitosis (PLM) on the third day after injection of bone marrow was 10.7 hr in transfused as compared to 5.6 hr in non-transfused mice. One injection of five units of erythropoietin on day 2 decreased the mean cycle time to 7.3 hr in transfused mice and increased expansion of the progenitor cells. The effects of erythropoietin on cell proliferation were prompt: a significant increase of incorporation of 3H-TdR into DNA occurred within 2 hr of injection. Erythroblasts were absent from the spleens of transfused, irradiated bone marrow injected mice; however, erythroblasts appeared by 72 hr and 48 hr following EPO injection either 2 days or 5 days after transplantation respectively. Increased uptake of radioactive iron in spleen after erythropoietin injection preceded the appearance of erythroblasts by 2 and 1 days when erythropoietin was injected either 2 or 5 days after marrow transplantation respectively. The increase in cellular proliferation induced by erythropoietin in transfused irradiated mice injected with bone marrow equivalent to 0.35 femoral shaft was manifested as an increase of the total DNA content in the spleen by 119 μg (11.9 × 106 cells) within 48 hr of injection. The cellular increment produced by EPO injection on day 5 to mice given 0.05 femoral shaft consisted mainly of undifferentiated mononuclear cells, most of which were labelled, with erythroblasts comprising only one quarter of the increment. Erythropoietin inactivated by mild acid hydrolysis failed to increase cellular proliferation.  相似文献   

12.
Experiments were performed with cultured primary root tips of sunflower (Helianthus annuus var. Russian Mammoth) to determine: (1) if progression in the mitotic cycle of meristematic cells was nutritionally controllable by carbohydrate starvation and replenishment; (2) where in the mitotic cycle control was effected; and (3) whether nutritional deprivation could be used to detect phenotypically different subpopulations in a complex tissue. Meristematic cells were rendered stationary by carbohydrate starvation, as indicated by the absence of cell division; this condition was reversed by carbohydrate provision. After 72 or 96 hr of starvation most cells stopped in G1 (80–90%) and G2 (10–20%), and a very few (“leaky” cells) continued to enter S. “Leaky” cells represent a small population with an S period of approximately 4.1 hr that either lack a principal control point in G1 or have an unusual metabolism whereby the control point requirements are met and have a carbohydrate dependence for mitosis. Though phenotypically different, no specific functions can be attributed to “leaky” cells at this time.  相似文献   

13.
The proliferating cells of mouse epidermis (basal cells) can be separated from the non-proliferating cells (differentiating cells) (Laerum, 1969) and brought into a mono-disperse suspension. This makes it possible to determine the cell cycle distributions (e.g. the relative number of cells in the G^ S and (G2+ M) phases of the cell cycle) of the basal cell population by means of micro-flow fluorometry. To study the regenerative cell proliferation in epidermis in more detail, changes in cell cycle distributions were observed by means of micro-flow fluorometry during the first 48 hr following adhesive tape stripping. 3H-TdR uptake (LI and grain count distribution) and mitotic rate (colcemid method) were also observed. An initial accumulation of G2 cells was observed 2 hr after stripping, followed by a subsequent decrease to less than half the control level. This was followed by an increase of cells entering mitosis from an initial depression to a first peak between 5 and 9 hr which could be satisfactorily explained by the changes in the G2 pool. After an initial depression of the S phase parameters, three peaks with intervals of about 12 hr followed. The cells in these peaks could be followed as cohorts through the G2 phase and mitosis, indicating a partial synchrony of cell cycle passage, with a shortening of the mean generation time of basal cells from 83-3 hr to about 12 hr. The oscillations of the proportion of cells in G2 phase indicated a rapid passage through this cell cycle phase. The S phase duration was within the normal range but showed a moderate decrease and the Gj phase duration was decreased to a minimum. In rapidly proliferating epidermis there was a good correlation between change in the number of labelled cells and cells with S phase DNA content. This shows that micro-flow fluorometry is a rapid method for the study of cell kinetics in a perturbed cell system in vivo.  相似文献   

14.
Abstract Nocodazole, a temporary inhibitor of microtubule formation, has been used to partly synchronize Ehrlich ascites tumour cells growing in suspension. the gradual entry of cells into mitosis and into the next cell cycle without division during drug treatment has been studied by flow cytometric determination of mitotic cells, analysing red and green fluorescence after low pH treatment and acridine orange staining. Determination of the mitotic index (MI) by this method has been combined with DNA distribution analysis to measure cell-cycle phase durations in asynchronous populations growing in the presence of the drug. With synchronized cells, it was shown that in the concentration range 0.4–4.0 μg/l, cells could only be arrested in mitosis for about 7 hr and at 0.04 μg/ml, for about 5 hr. After these time intervals, the DNA content in nocodazole-blocked cells was found to be increased, and, in parallel, the ratio of red and green fluorescence was found to have changed, showing entry of cells into a next cell cycle without division (polyploidization). It was therefore only possible to partially synchronize an asynchronous population by nocodazole. However, a presynchronized population, e.g. selected G1 cells or metabolically blocked G1/S cells, were readily and without harmful effect resynchronized in M phase by a short treatment (0.4 μg/ml, 3–4 hr) with nocodazole; after removal of the drug, cells divided and progressed in a highly synchronized fashion through the next cell cycle.  相似文献   

15.
The model is based on the assumption that the cell cycle contains a Go-phase which cells leave randomly with a constant probability per unit time, γ. After leaving the Go-phase, the cells enter the C-phase which ends with cell division. The C-phase and its constituent phases, the‘true’G1-phase, the S-phase, the G2-phase and mitosis are assumed to have constant durations of T, T1Ts, T2 and Tm, respectively. For renewal tissue it is assumed that the probability per unit time of being lost from the population is a constant for all cells irrespective of their position in the cycle. The labelled mitosis curve and labelling index for continuous labelling are derived in terms of γ, T, and Ts. The model generates labelled mitosis curves which damp quickly and reach a constant value of twice the initial labelling index, if the mean duration of the Go-phase is sufficiently long. It is shown that the predicted labelled mitosis and continuous labelling curves agree reasonably well with the experimental curves for the hamster cheek pouch if T has a value of about 60 hr. Data are presented for the rat dorsal epidermis which support the assumption that there is a constant probability per unit time of a cell being released from the Go-phase.  相似文献   

16.
Summary Nucleolar RNA synthesis is inhibited and cell division delayed in synchronous cultures of mouse fibroblasts (strain L-929) treated with actinomycin D (0.04 μg per ml). The gradual loss of actinomycin D from the cells during a 2-hr period following incubation is accompanied by an increase in the rate of nucleolar RNA synthesis to the control level. Following this the rate of protein synthesis is decreased by 25% for approximately 9 hr. The length of time that nucleolar RNA and protein synthesis are inhibited accounts for the delay in mitosis 1 1/2 cell cycles later. These data support the contention that certain proteins produced during one interphase are prerequisite for division in a subsequent cycle.  相似文献   

17.
Summary Nucleolar RNA synthesis is inhibited and cell division delayed in synchronous cultures of mouse fibroblasts (strain L-929) treated with actinomycin D(0.04 μ per ml). The gradual loss of actinomycin D from the cells during a 2-hr period following incubation is accompanied by an increased in the rate of nucleolar RNA synthesis to the control level. Following this the rate of protein synthesis is decreased by 25% for approximately 9 hr. The length of time that nucleolar RNA and protein synthesis are inhibited accounts for the delay in mitosis 1 1/2 cell cycles later. These data support the contention that certain proteins produced during one interphase are prerequisite for division in a subsequent cycle.  相似文献   

18.
The time of onset of mitosis and DNA synthesis has been determined in roots of germinating seeds of Vicia faba. Mitosis is not initiated in all roots simultaneously. Dividing cells are seen 36 hr from the beginning of germination, but they are present in low frequency (0.02%). Dividing cells do not become frequent, i.e., occurring as 5% or more of all cells, until 56 hr, and it is not until 66–68 hr that all roots in a sample of 10 are mitotically active. DNA synthesis shows a similar sporadic beginning. It occurs in a few cells by 28 hr, and by 40 hr all roots exposed to 3H–thymidine show active incorporation. For most cells in these germinating roots DNA synthesis precedes mitosis. In one root in 10, however, some cells are unlabeled when they enter mitosis, indicating that they had spent the dormant period in the G2 phase of the mitotic cycle. The presence of these cells determines whether or not roots show chromatid and chromosome aberrations following irradiation during germination.  相似文献   

19.
Cell kinetic parameters of cells in the crypt of the jejunum of the mouse were obtained autoradiographically. A number of different methods used in cell proliferation studies were applied to the same animal strain kept under constant conditions. In order to avoid effects of geometrical factors, squashes of isolated crypts were used.
The generation time was determined by the per cent labelled mitoses method of Quastler, modified by double labelling with 3H- and 14C-TdR. This modified method permits a more exact determination of the generation time. The duration of the cycle was 14 hr.
Double labelling experiments in which an injection of 3H-TdR was followed by an injection of 14C-TdR after 1 hr showed that the cell flux was 7.0%/hr at the beginning of the S-phase and 7.68%/hr at the end. Assuming steady state growth a constant cell flux of 7.15%/hr within the whole cycle can be derived from the measured generation time of 14 hr. These results clearly show that the crypt epithelia constitute a steady state system with constant frequency distribution of the cells throughout the cycle.
The per cent labelled mitoses method after a single injection of 3H-TdR as well as double labelling experiments with 3H- and 14C-TdR give an estimate of the S-phase of 8.0 or 7.4 hr respectively. Double determinations lead to a value of 0.54 or 0.52 hr respectively for the duration of mitosis and to values of 77% and 72%  相似文献   

20.
The question was investigated of whether for crypt epithelia of the jejunum of the mouse all cells labelled after a single injection of 3H-TdR subsequently divide or whether cells exist in the crypt which synthesize metabolic DNA and, therefore, do not undergo division after labelling.
A double labelling experiment was performed with a first injection of 3H-TdR followed 1 hr later by an injection of 14C-TdR. Then from double emulsion autoradiographs of isolated squashed crypts the number of 3H-only, 14C-only and double labelled cells and mitoses were counted.
The double labelling produced a narrow, 1 hr wide sub-population of 3H-only labelled cells. This subpopulation of S cells completed its division before labelled cells were lost from the crypts by migration onto the villi. The results showed that this subpopulation of 3H-only cells completely doubled within 3 hr and then remained constant through 6 hr. From this result it was concluded that every cell labelled after a single injection of 3H-TdR divides.
From the same autoradiographs the flow rate through the end of mitosis was measured. From the flow rate and the mitotic index a mitotic duration of 0·5 hr was determined. The agreement of this measured mitotic time with the value calculated from the labelling index, mitotic index and S duration is also strong evidence that every labelled cell divides.
Both experiments show that the intestinal crypt does not contain cells synthesizing metabolic DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号