首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The enzyme catalyzing the reduction of sulfite by reduced benzyl viologen (BVH) was partially purified and characterized from two strains of wine yeasts, a sulfite-producing strain and a non-producing strain.Both enzymes showed corresponding features in pH-optima, optima of buffer and benzyl viologen concentrations.The enzymes did not catalyze the reduction of nitrite by reduced viologen dyes, but the reduction of sulfite was uncompetitively inhibited by nitrite. Compounds of sulfur metabolism such as sulfate, thiosulfate, cysteine, serine and methionine did not influence the activity of either of the enzymes. The main differences between the two enzymes exist in the specific activities in crude extracts, the K m -values for sulfite, substrate inhibition rates, and localization in different fractions during (NH4)2SO4 precipitation. The specific activity in crude extracts of the sulfite-producing strain (0.052 moles S2- x min-1 x mg-1) was about three fold higher than that of the non-producing strain (0.0179 moles S2- x min-1 x mg-1). On the other hand the sulfite-producing strain had a higher K m -value for sulfite (2×10-3 M) and was more strongly inhibited by the substrate than the non-producing strain (6×10-3 M).  相似文献   

2.
Four strains of wine yeasts of two different species (Saccharomyces cerevisiae var. ellipsoideus and Saccharomyces bayanus) were investigated with respect to the influence of various sulfur compounds on the formation of O-acetylserine sulfhydrylase, O-acetylhomoserine sulfhydrylase and serine sulfhydrase. The specific enzyme activities were followed over a growth period of 96 h.In the presence of sulfate, sulfite and djencolic acid during exponential growth, a moderate increase of O-acetylserine sulfhydrylase and O-acetylhomoserine sulfhydrylase activities was recognized. In three strains cysteine and methionine prevented this derepression. At the end of the exponential growth phase, biosynthesis of these two enzymes was suppressed again. Serine sulfhydrase showed a modified regulation which indicates that its synthesis and the synthesis of O-acetylserine and O-acetylhomoserine sulfhydrylases are not coordinated.Abbreviations OAS O-acetylserine - OAHS O-acetylhomoserine  相似文献   

3.
The relatively high specific sulfite reductase activity of 25 mU/mg protein was found in extracts from Thiobacillus denitrificans. The absorption spectrum of the partially purified enzyme was similar to the siroheme containing sulfite reductases from other sources. It is suggested that the T. denitrificans sulfite reductase may function during the oxidation of reduced sulfur compounds.  相似文献   

4.
Cells of the phototrophic bacterium Chromatium vinosum strain D were shown to contain a siroheme sulfite reductase after autotrophic growth in a sulfide/bicarbonate medium. The enzyme could not be detected in cells grown heterotrophically in a malate/sulfate medium. Siroheme sulfite reductase was isolated from autotrophic cells and obtained in an about 80% pure preparation which was used to investigate some molecular and catalytic properties of the enzyme. It was shown to consist of two different types of subunits with molecular weights of 37,000 and 42,000, most probably arranged in an 44-structure. The molecular weight of the native enzyme was determined to 280,000, 51 atoms of iron and 47 atoms of acid-labile sulfur were found per enzyme molecule. The absorption spectrum indicated siroheme as prosthetic group; it had maxima at 280 nm, 392 nm, 595 nm, and 724 nm. The molar extinction coefficients were determined as 302×103 cm2xmmol-1 at 392 nm, 98×103 cm2 xmmol-1 at 595 nm and 22×103 cm2x-mmol-1 at 724 nm. With reduced viologen dyes as electron donor the enzyme reduced sulfite to sulfide, thiosulfate, and trithionate. The turnover number with 59 (2 e-/enzyme moleculexmin) was low. The pH-optimum was at 6.0. C. vinosum sulfite reductase closely resembled the corresponding enzyme from Thiobacillus denitrificans and also desulfoviridin, the dismilatory sulfite reductase from Desulfovibrio species. It is proposed that C. vinosum catalyses anaerobic oxidation of sulfide and/or elemental sulfur to sulfite in the course of dissimilatory oxidation of reduced sulfur compounds to sulfate.Non-common abbreviations APS adenylyl sulfate - SDS sodium dodecyl sulfate  相似文献   

5.
An inducible sulfite reductase was purified from Clostridium pasteurianum. The pH optimum of the enzyme is 7.5 in phosphate buffer. The molecular weight of the reductase was determined to be 83,600 from sodium dodecyl sulfate gel electrophoresis with a proposed molecular structure: 22. Its absorption spectrum showed a maximum at 275 nm, a broad shoulder at 370 nm and a very small absorption maximum at 585 nm. No siroheme chromophore was isolated from this reductase. The enzyme could reduced the following substrates in preferential order: NH2OH> SeO 3 2- >NO 2 2- at rates 50% or less of its preferred substrate SO 3 2- . The proposed dissimilatory intermediates, S3O 6 2- or S2O 3 2- , were not utilized by this reductase while KCN inhibited its activity. Varying the substrate concentration [SO 3 2- ] from 1 to 2.5 mol affected the stoichiometry of the enzyme reaction by alteration of the ratio of H2 uptake to S2- formed from 2.5:1 to 3.1:1. The inducible sulfite reductase was found to be linked to ferredoxin which could be completely replaced by methyl viologen or partially by benzyl viologen. Some of the above-mentioned enzyme properties and physiological considerations indicated that it was a dissimilatory type sulfite reductase.Abbreviations SDS sodium dodecyl sulfate - BSA bovine serum albumin - LDH Lactate dehydrogenase  相似文献   

6.
Sulfur oxygenase, sulfite oxidase, adenylyl sulfate reductase, rhodanase, sulfur : Fe(III) oxidoreductase, and sulfite : Fe(III) oxidoreductase were found in cells of aerobic thermoacidophilic bacteria Sulfobacillus sibiricus, strains N1 and SSO. Enzyme activity was revealed in the cells grown on medium with elemental sulfur or in the presence of various sulfide minerals and concentrates of sulfide ores. The activity of enzymes of sulfur metabolism depended little on the degree of aeration during bacterial growth.  相似文献   

7.
A novel sulfite oxidase has been identified from Thermus thermophilus AT62. Despite this enzyme showing significant amino-acid sequence homology to several bacterial and eukaryal putative and identified sulfite oxidases, the kinetic analysis, performed following the oxidation of sulfite and with ferricyanide as the electron acceptor, already pointed out major differences from representatives of bacterial and eukaryal sources. Sulfite oxidase from T. thermophilus, purified to homogeneity, is a monomeric enzyme with an apparent molecular mass of 39.1 kDa and is almost exclusively located in the periplasm fraction. The enzyme showed sulfite oxidase activity only when ferricyanide was used as electron acceptor, which is different from most of sulfite-oxidizing enzymes from several sources that use cytochrome c as co-substrate. Spectroscopic studies demonstrated that the purified sulfite oxidase has no cytochrome like domain, normally present in homologous enzymes from eukaryotic and prokaryotic sources, and for this particular feature it is similar to homologous enzyme from Arabidopsis thaliana. The identified gene was PCR amplified on T. thermophilus AT62 genome, expressed in Escherichia coli and the recombinant protein identified and characterized.  相似文献   

8.
Saccharomyces cerevisiae wine-producing yeast cultures grown under model winemaking conditions could be induced to liberate hydrogen sulfide (H2S) by starvation for assimilable nitrogen. The amount of H2S produced was dependent on the yeast strain, the sulfur precursor compound, the culture growth rate, and the activity of the sulfite reductase enzyme (EC 1.8.1.2) immediately before nitrogen depletion. Increased H2S formation relative to its utilization by metabolism was not a consequence of a de novo synthesis of sulfite reductase. The greatest amount of H2S was produced when nitrogen became depleted during the exponential phase of growth or during growth on amino acids capable of supporting short doubling times. Both sulfate and sulfite were able to act as substrates for the generation of H2S in the absence of assimilable nitrogen; however, sulfate reduction was tightly regulated, leading to limited H2S liberation, whereas sulfite reduction appeared to be uncontrolled. In addition to ammonium, most amino acids were able to suppress the liberation of excess H2S when added as sole sources of nitrogen, particularly for one of the strains studied. Cysteine was the most notable exception, inducing the liberation of H2S at levels exceeding that of the nitrogen-depleted control. Threonine and proline also proved to be poor substitutes for ammonium. These data suggest that any compound that can efficiently generate sulfide-binding nitrogenous precursors of organic sulfur compounds will prevent the liberation of excess H2S.  相似文献   

9.
Evidence is presented for the presence in propanesulfonate-grown Comamonas acidovorans strain P53 of a cytoplasmically located sulfonatase that does not sediment at 100,000 × g. This enzyme catalysed the sulfonate-dependent oxidation of NADH or NADPH, indicating a monooxygenase that effects the addition of molecular oxygen to C3-C6 1-alkanesulfonates. Enzyme activity was proportional to protein concentration only above approximately 2 mg cytoplasmic fraction protein ml–1, suggesting that the sulfonatase is a multicomponent enzyme, possibly comparable with methanesulfonate monooxygenase. Enzyme activity was strongly inhibited by divalent metal-chelating agents, but was insensitive to cyanide and azide. Sulfite released from sulfonates by Comamonas acidovorans was oxidized by an unusual sulfite dehydrogenase. This was purified approximately 230-fold and was shown to have a molecular mass of 74.4 kDa, comprising two or more subunits. The enzyme activity was specific in vitro for ferricyanide as an electron acceptor and, unlike other bacterial sulfite dehydrogenases, did not contain native cytochrome c or reduce added cytochrome c. It was a basic protein, insensitive to chloride and sulfate, and exhibited a K m for sulfite of approximately 45 μM. Received: 19 May 1999 / Accepted: 3 September 1999  相似文献   

10.
Summary A nitrate reductase from the thermophilic acidophilic alga, Cyanidium caldarium, was studied. The enzyme utilises the reduced forms of benzyl viologen and flavins as well as both NADPH2 and NADH2 as electron donors to reduce nitrate.Heat treatment has an activating effect on the benzyl viologen (FMNH2, FADH2) nitrate reductase. At 50°C the activation of the enzyme is complete in about 20 min of exposure, whereas at higher temperatures (until 75°C) it is virtually an instantaneous phenomenon. The observed increase in activity is very low in extracts from potassium nitrate grown cells, whereas it is 5 or more fold in extracts from ammonium sulphate supplied cells. The benzyl viologen nitrate reductase is stable at 60°C and is destroyed at 75°C after 3 min; the NADPH2 nitrate reductase is destroyed at 60°C. The pH optimum for both activities was found in the range 7.8–8.2.Ammonium nitrate grown cells possess a very low level of nitrate reductase: when they are transferred to a nitrate medium a rapid synthesis of enzyme occurs. By contrast, when cells with fully induced activity are supplied with ammonia, a rapid loss of NADPH2 and benzyl viologen nitrate reductase occurs; however, activity measured with heated extracts shows that the true level of benzyl viologen nitrate reductase is as high as before ammonium addition. It is suggested that the presence of ammonia causes a rapid inactivation but no degradation of the enzyme.Cycloheximide inhibits the formation of the enzyme; the drug is without effect on the loss of nitrate reductase activity induced by ammonium. The nitrate reductase is reactivated in vivo by the removal of the ammonium, in the absence as well as in the presence of cycloheximide.  相似文献   

11.
《BBA》2020,1861(11):148279
The microaerophilic bacterium Aquifex aeolicus is a chemolitoautotroph that uses sulfur compounds as electron sources. The model of oxidation of the energetic sulfur compounds in this bacterium predicts that sulfite would probably be a metabolic intermediate released in the cytoplasm. In this work, we purified and characterized a membrane-bound sulfite dehydrogenase, identified as an SoeABC enzyme, that was previously described as a sulfur reductase. It is a member of the DMSO-reductase family of molybdenum enzymes. This type of enzyme was identified a few years ago but never purified, and biochemical data and kinetic properties were completely lacking. An enzyme catalyzing sulfite oxidation using Nitro-blue tetrazolium as artificial electron acceptor was extracted from the membrane fraction of Aquifex aeolicus. The purified enzyme is a dimer of trimer (αβγ)2 of about 390 kDa. The KM for sulfite and kcat values were 34 μM and 567 s−1 respectively, at pH 8.3 and 55 °C. We furthermore showed that SoeABC reduces a UQ10 analogue, the decyl-ubiquinone, as well, with a KM of 2.6 μM and a kcat of 52.9 s−1. It seems to specifically oxidize sulfite but can work in the reverse direction, reduction of sulfur or tetrathionate, using reduced methyl viologen as electron donor. The close phylogenetic relationship of Soe with sulfur and tetrathionate reductases that we established, perfectly explains this enzymatic ability, although its bidirectionality in vivo still needs to be clarified. Oxygen-consumption measurements confirmed that electrons generated by sulfite oxidation in the cytoplasm enter the respiratory chain at the level of quinones.  相似文献   

12.
Metabolism of various sulfur compounds in Bacillus subtilis during growth and sporulation was investigated by use of tracer techniques, in an attempt to clarify the mechanism involved in the formation of cystine rich protein of the spore coat.

Methionine, homocysteine, cystathionine, cysteine and some inorganic sulfur compounds (sulfate, sulfite and thiosulfate) were utilized by this organism as sulfur sources for its growth and sporulation. Biosynthesis of methionine from sulfate during growth was more or less inhibited by the addition of cysteine, homocysteine or cystathionine to the culture.

It is suggested from these results that in Bacillus subtilis methionine is synthesized from sulfate through cysteine, cystathionine and homocysteine as is the case in Salmonella or Neurospora. The results also suggest that the metabolism of sulfur-containing amino acids in Bacillus subtilis is strongly regulated by methionine and homocysteine.  相似文献   

13.
The level of anhydrotetracycline oxygenase (an enzyme catalyzing the penultimate reaction in the biosynthesis of tetracycline) inStreptomyces aureofaciens was substantially influenced by the amount of inorganic phosphate and by the presence of benzyl thiocyanate in the cultivation medium. Phosphate decreased the specific activity of the enzyme, particularly when added to a growing culture. On the other hand, benzyl thiocyanate increased the specific activity of the enzyme. Its effect was most conspicuous in the growth phase. The effect of benzyl thiocyanate was more pronounced in the low-production strain than in the producing variant. Inorganic phosphate and benzyl thiocyanate did not influence the enzyme activityin vitro. Phosphate added to the growing cultures was readily absorbed by the cells. During this time the enzyme synthesis was repressed, derepression occurred only after exhaustion of phosphate from the medium. The stimulatory efect of benzyl thiocyanate on the enzyme synthesis was not reversed by the inorganic phosphate added.  相似文献   

14.
An enzymatic complex from Rhodotorula was characterized and it was indicated that it possessed thiosulfate-oxidizing activity, forming tetrathionate as well as sulfite oxidase activity. Both activities coupled with ferricyanide and native cytochrome c but no with mammalian cytochrome c. Activities of these enzymes were inhibited by thiol inhibitors. Chelating agents did not affect thiosulfate oxidizing activity and only moderately inhibited sulfite oxidase. Both activities disappeared after treatment with proteolytic enzymes or sodium deoxycholate which indicates an essential role played not only by protein but also by phospholipids in the enzymatic activity of the complex. Thiosulfate oxidizing enzyme had a K m for thiosulfate of 0.16 mM with ferricyanide as electron acceptor and of 14 M with native cytochrome c and of 0.34 mM for ferricyanide. Optimum pH for this activity was 7.8. Other properties of this enzyme were similar to those of thiobacilli and heterotrophic bacteria. The activity of sulfite oxidase was inhibited by 50% with 10 M AMP. The K m values of this enzyme were 1 mM with ferricyanide as electron acceptor and 60 M with native cytochrome c for sulfite and 0.42 mM for ferricyanide. The enzyme did not show a specific optimum pH value with ferricyanide as electron acceptor. However, with native cytochrome c optimum pH was 7.8 for its activity. In many properties the sulfite oxidase from Rhodotorula was similar to the enzyme from Thiobacillus ferrooxidans, T. concretivorus, T. thioparus and T. novellus.Abbreviations CSH reduced glutathion - APS reductase, adenosine-S-phosphosulfate reductase - pHMB p-hydroxymercuribenzoate - NEM N-ethylmalcimide - TCA trichloroacetic acid - PPO 2,5-diphenyloxazole - POPOP 2,2-p-phenylen-bis 5-phenyloxazol  相似文献   

15.
The ferredoxin-dependent sulfite reductase from maize was treated, in separate experiments, with three different covalent modifiers of specific amino acid side chains. Treatment with the tryptophan-modifying reagent, N-bromosuccinimide (NBS), resulted in a loss of enzymatic activity with both the physiological donor for the enzyme, reduced ferredoxin, and with reduced methyl viologen, a non-physiological electron donor. Formation of the 1:1 ferredoxin/sulfite reductase complex prior to treating the enzyme with NBS completely protected the enzyme against the loss of both activities. Neither the secondary structure, nor the oxidation-reduction midpoint potential (E m) values of the siroheme and [4Fe–4S] cluster prosthetic groups of sulfite reductase, nor the binding affinity of the enzyme for ferredoxin were affected by NBS treatment. Treatment of sulfite reductase with the lysine-modifying reagent, N-acetylsuccinimide, inhibited the ferredoxin-linked activity of the enzyme without inhibiting the methyl viologen-linked activity. Complex formation with ferredoxin protects the enzyme against the inhibition of ferredoxin-linked activity produced by treatment with N-acetylsuccinimide. Treatment of sulfite reductase with N-acetylsuccinimide also decreased the binding affinity of the enzyme for ferredoxin. Treatment of sulfite reductase with the arginine-modifying reagent, phenylglyoxal, inhibited both the ferredoxin-linked and methyl viologen-linked activities of the enzyme but had a significantly greater effect on the ferredoxin-dependent activity than on the reduced methyl viologen-linked activity. The effects of these three inhibitory treatments are consistent with a possible role for a tryptophan residue the catalytic mechanism of sulfite reductase and for lysine and arginine residues at the ferredoxin-binding site of the enzyme.  相似文献   

16.
The localization of the dissimilatory sulfite reductase in Desulfovibrio desulfuricans strain Essex 6 was investigated. After treatment of the cells with lysozyme, 90% of the sulfite reductase activity was found in the membrane fraction, compared to 30% after cell rupture with the French press. Sulfite reductase was purified from the membrane (mSiR) and the soluble (sSiR) fractiion. On SDS-PAGE, both mSiR and sSiR exhibited three bands at 50, 45 and 11 kDa, respectively. From their UV/VIS properties (distinct absorption maxima at 391, 410, 583, 630 nm, enzymes as isolated) and the characteristic red fluorescence in alkaline solution, mSiR and sSiR were identified as desulfoviridin. Sulfite reductase (HSO3 -H2S) activity was reconstituted by coupling of mSiR to hydrogenase and cytochrome c 3 from D. desulfuricans. The specific activity of mSiR was 103 nmol H2 min-1 mg-1, and sulfide was the major product (72% of theoretical yield). No coupling was found with sSiR under these conditions. Furthermore, carbon monoxide was used to diferentiate between the membrane-bound and the soluble sulfite reductase. In a colorimetric assay, with photochemically reduced methyl viologen as redox mediator, CO stimulated the activity of sSiR significantly. CO had no effect in the case of mSiR. These studies documented that, as isolated, both forms of sulfite reductase behaved differently in vitro. Clearly, in D. desulfuricans, the six electron conversion HSO3 -H2S was achieved by a membranebound desulfoviridin without the assistance of artificial redox mediators, such as methyl viologen.Abbreviations SiR sulfite reductase - mSiR sulfite reductase purified from membranes - sSiR sulfite reductase purified from the soluble fraction Enzymes Sulfite reductase, EC 1.8.99.1 Cytochrome c 3 hydrogenase, EC 1.12.2.1  相似文献   

17.
Abstract Thiobacillus versutus was shown to grow chemolithoautotrophically under microaerophilic conditions, with crystalline elemental sulfur (S°) and thiosulfate as sole electron source. The exponential growth rate on S° ( μ = 0.106 h−1) measured in batch culture was similar to the reported maximum growth rate on thiosulfate in chemostat cultures. The rates of thiosulfate, S° and sulfite oxidation were measured respirometrically using an oxygen electrode. During growth under air on thiosulfate, as well as under low oxygen pressure on S° and thiosulfate, a relatively strong sulfuroxidizing activity (SOA) was measured. The induction of the SOA on cells growing with thiosulfate and the similar growth rates on S° and thiosulfate strongly suggest that S° could be an important intermediate during thiosulfate utilization.  相似文献   

18.
All of fourteen sulfate-reducing bacteria tested were able to carry out aerobic respiration with at least one of the following electron donors: H2, lactate, pyruvate, formate, acetate, butyrate, ethanol, sulfide, thiosulfate, sulfite. Generally, we did not obtain growth with O2 as electron acceptor. The bacteria were microaerophilic, since the respiration rates increased with decreasing O2 concentrations or ceased after repeated O2 additions. The amounts of O2 consumed indicated that the organic substrates were oxidized incompletely to acetate; only Desulfobacter postgatei oxidized acetate with O2 completely to CO2. Many of the strains oxidized sulfite (completely to sulfate) or sulfide (incompletely, except Desulfobulbus propionicus); thiosulfate was oxidized only by strains of Desulfovibrio desulfuricans; trithionate and tetrathionate were not oxidized by any of the strains. With Desulfovibrio desulfuricans CSN and Desulfobulbus propionicus the oxidation of inorganic sulfur compounds was characterized in detail. D. desulfuricans formed sulfate during oxidation of sulfite, thiosulfate or elemental sulfur prepared from polysulfide. D. propionicus oxidized sulfite and sulfide to sulfate, and elemental sulfur mainly to thiosulfate. A novel pathway that couples the sulfur and nitrogen cycles was detected: D. desulfuricans and (only with nitrite) D. propionicus were able to completely oxidize sulfide coupled to the reduction of nitrate or nitrite to ammonia. Cell-free extracts of both strains did not oxidize sulfide or thiosulfate, but formed ATP during oxidation of sulfite (37 nmol per 100 nmol sulfite). This, and the effects of AMP, pyrophosphate and molybdate on sulfite oxidation, suggested that sulfate is formed via the (reversed) sulfate activation pathway (involving APS reductase and ATP sulfurylase). Thiosulfate oxidation with O2 probably required a reductive first step, since it was obtained only with energized intact cells.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - APS adenosine phosphosulfate or adenylyl sulfate  相似文献   

19.
A number of sulfur compounds were tested as sulfur sources for the growth of three strains of anaerobic halophilic saccharolytic bacteria isolated from hypersaline water bodies of the eastern Crimea (USSR). Dithionite and sulfite at 1 mM concentration completely inhibited the growth of all strains. Methanethiol turned out to be the sole sulfur source for growth ofHalobacteroides strains in the defined medium with glucose and leucine. Methanethiol also stimulated growth of cultures in the complex medium with yeast extract. TheHaloincola saccharolytica Z-7787 appeared to be capable of methanethiol formation from methionine. All organisms studied were capable of heterotrophic sulfur reduction, producing up to 13 mM H2S, but no evidence that they gain energy from the process has been obtained. The extremely halophilicHalobacteroides lacumaris may participate in sulfidogenesis at the high salinity (20–30% NaCl). The ecological position of haloanaerobes in halophilic community is discussed.  相似文献   

20.
Naturally occurring enzymes may be modified by covalently attaching hydrophobic groups that render the enzyme soluble and active in organic solvents, and have the potential to greatly expand applications of enzymatic catalysis. The reduction of elemental sulfur to hydrogen sulfide by a hydrogenase isolated from Pyrococcus furiosus has been investigated as a model system for organic biocatalysis. While the native hydrogenase catalyzed the reduction of sulfur to H(2)S in aqueous solution, no activity was observed when the aqueous solvent was replaced with anhydrous toluene. Hydrogenase modified with PEG p-nitrophenyl carbonate demonstrated its native biocatalytic ability in toluene when the reducing dye, benzyl viologen, was also present. Neither benzyl viologen nor PEG p-nitrophenyl carbonate alone demonstrated reducing capability. PEG modified cellulase and benzyl viologen were also incapable of reducing sulfur to H(2)S, indicating that the enzyme itself, and not the modification procedure, is responsible for the conversion in the nonpolar organic solvent. Sulfide production in toluene was tenfold higher than that produced in an aqueous system with equal enzyme activity, demonstrating the advantages of organic biocatalysis. Applications of bio-processing in nonaqueous media are expected to provide significant advances in the areas of fossil fuels, renewable feedstocks, organic synthesis, and environmental control technology. (c) 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号