首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potential effects of climate change on plant species in the Faroe Islands   总被引:3,自引:0,他引:3  
Aim To identify the effect of climate change on selected plant species representative of the main vegetation types in the Faroe Islands. Due to a possible weakening of the North Atlantic Current, it is difficult to predict whether the climate in the Faroe Islands will be warmer or colder as a result of global warming. Therefore, two scenarios are proposed. The first scenario assumes an increase in summer and winter temperature of 2 °C, and the second a decrease in summer and winter temperature of 2 °C. Location Temperate, low alpine and alpine areas in the northern and central part of the Faroe Islands. Methods The responses of 12 different plant species in the Faroe Islands were tested against measured soil temperature, expressed as Tmin, Tmax, snow cover and growing degree days (GDD), using generalised linear modelling (GLM). Results The tolerance to changes in winter soil temperature (0.3–0.8 °C) was found to be lower than the tolerance to changing summer soil temperature (0.7–1.0 °C), and in both cases lower than the predicted climate changes. Conclusions The species most affected by a warming scenario are those that are found with a limited distribution restricted to the uppermost parts of the mountains, especially Salix herbacea, Racomitrium fasciculare, and Bistorta vivipara. For other species, the effect will mainly be a general upward migration. The most vulnerable species are those with a low tolerance, especially Calluna vulgaris, and also Empetrum nigrum, and Nardus stricta. If the climate in the Faroe Islands should become colder, the most vulnerable species are those at low altitudes. A significantly lower temperature would be expected to produce a serious reduction in the extent of Vaccinium myrtillus and Galium saxatilis. Species like Empetrum nigrum, Nardus stricta, and Calluna vulgaris may also be vulnerable. In any case, these species can be expected to migrate downwards.  相似文献   

2.
3.
Using an exhaustive data compilation, Iberian vascular plant species richness in 50 times 50 UTM grid cells was regressed against 24 explanatory variables (spatial, geographical, topographical, geological, climatic, land use and environmental diversity variables) using Generalized Linear Models and partial regression analysis in order to ascertain the relative contribution of primary, heterogeneous and spatially structured variables. The species richness variation accounted for by these variables is reasonably high (65% of total deviance). Little less than half of this variation is accounted for spatially structured variables. A purely spatial component of variation is hardly significant. The most significant variables are those related to altitude, and particularly maximum altitude, whose cubic response reflects the occurrence of the maximum number of species at the highest altitudes. This result highlighted the importance of Iberian mountains as hotspots of diversity and the relevance of large and small scale historical factors in contemporary plant distribution patterns. Climatic or energy-related variables contributed little, whereas geological (calcareous and acid rocks) and, to a lesser extent, environmental heterogeneity variables (land use diversity and altitude range) seem to be more important.  相似文献   

4.
Aim  We quantify the elevational patterns of species richness for all vascular plants and some functional and taxonomic groups on a regional scale on a tropical mountain and discuss some possible causes for the observed patterns.
Location  Mount Kinabalu, Sabah, Borneo.
Methods  A data base containing elevational information on more than 28,000 specimens was analysed for vascular plant distribution, taking into account sampling effort. The total species richness pattern was estimated per 300-m elevational interval by rarefaction analyses. The same methods were also applied to quantify species richness patterns of trees, epiphytes, and ferns.
Results  Total species richness has a humped relationship with elevation, and a maximum species richness in the interval between 900 and 1200 m. For ferns and epiphytes the maximum species richness is found at slightly higher elevations, whereas tree species did not have a statistically significant peak in richness above the lowest interval analysed.
Main conclusions  For the first time a rigorous estimate of an elevational pattern in species richness of the whole vascular plant flora of a tropical mountain has been quantified. The pattern observed depends on the group studied. We discuss the differences between the groups and compare the results with previous studies of elevational patterns of species richness from other tropical areas. We also discuss the methods used to quantify the richness pattern and conclude that rarefaction gives an appropriate estimate of the species richness pattern.  相似文献   

5.
昆虫多样性参数的测定和表达   总被引:12,自引:0,他引:12  
简要介绍了文献中常见的表示昆虫多样性的3个指数物种数、辛普森指数和香农-维纳指数的测定和计算方法,讨论了香农-维纳指数和均匀度的英文字符的正确表达形式。  相似文献   

6.
Geographical patterns of species turnover in aquatic plant communities   总被引:1,自引:0,他引:1  
1. A classic theory in biogeography predicts that high latitude communities are unstable. This may be because of decreased species richness or decreased environmental predictability and productivity towards the poles.
2. We studied latitudinal patterns in long-term community persistence of aquatic vascular plants in 112 Finnish lakes, situated within a 1000-km range from the northernmost to the southernmost lake.
3. Contrary to theoretical predictions, we found that the turnover rate of plant species in 45 years was inversely related to latitude. That is, plant communities in northern lakes were more persistent than communities in southern lakes. When we used multiple regression to find the best predictors of species turnover rate (TR), latitude was the only variable that was highly significantly related to species turnover rate. Area, species number, water transparency, pH and change in transparency did not notably explain the gradient observed.
4. The latitudinal trend was mainly because of lower species immigration rates at higher latitudes, whereas extinction rate did not so strongly decrease with increasing latitude. Immigrations and extinctions in the lakes were not in balance: the species numbers between the 1930s and 1980s increased more strongly in the southern than northern lakes.
5. We suggest that the inverse relationship between latitude and plant species TR in Finland is most probably caused by human influence on lakes, especially eutrophication and immigration of new species in southern latitudes. In addition, although species richness per lake did not decrease towards the north, the total species pool probably does, which means that in the north there are fewer species that can actually immigrate.  相似文献   

7.
天山南坡高寒草地海拔梯度上的植物多样性变化格局   总被引:15,自引:0,他引:15  
山地气候随海拔梯度变化使山地成为研究生物多样性的热点区域。在天山南坡巴音布鲁克高寒草地,对不同海拔梯度下的物种多样性进行了研究。结果表明共调查样地9个,出现植物34种,分属17科29属;物种丰富度随海拔升高呈明显的偏峰格局,在海拔3060m的天山羽衣草(Alchemilla tianschanica)草甸,物种组成最为丰富,出现植物17种,分属12科17属;Shannon-Wiener指数的变化范围为2.02~2.40,最小值出现在海拔2760m以紫花针茅(Stipa purpurea)为优势种的高寒草原,峰值则出现在3060m的天山羽衣草草甸,Shannon-Wiener指数随海拔梯度的变化趋势与物种丰富度基本相同,呈明显的偏峰格局;随海拔升高,Cody指数表现出明显的单峰格局;Shannon-Wiener指数与生长季温度存在显著负相关,而与生长季湿度和土壤含水量存在显著正相关。  相似文献   

8.
Abstract Plant species cover-abundance and density data were collected for 94 sample plots across a gradient from rocky uplands to sandy outwash plains in the northern part of Grampians (Gariwerd) National Park in western Victoria. Detrended correspondence analysis (DCA) was used to identify dominant gradients in species composition. A range of static (e.g. substrate type, soil depth, microclimate indicators) and dynamic (e.g. elapsed time since last fire) environmental variables were measured. Correlations were sought between these variables and vegetation patterns including those for richness (R) and Shannon-Weiner diversity (H′). The dominant gradient of vegetation change identified by DCA separated rocky sites and sites near ephemeral streams, from well-drained, sandy sites. Secondary gradients identified time since last fire as important for sandy sites, and altitude and aspect-related microclimate for rocky sites. Diversity was highest in the first 2 years after fire but showed no further decline in older sites. Overall, R and H' were negatively correlated with soil nutrient concentrations. On sandy sites R was high, but was low on rocky sites and near streams. Within the rocky sites, R was highest on cool, moist south and east slopes, and lowest on hot, dry north and west slopes. Explanations of diversity patterns based on inhibition of competitive exclusion due to stress and recurrent disturbance best fit the results presented here.  相似文献   

9.
Determining relationships between the ranges of introduced species and geographical and environmental factors is an important step in understanding the mechanisms and processes of the spread of introduced species. In this study, I examined the beta diversity and latitude relationship for all naturalized exotic species of vascular plants in North America at a continental scale. Beta diversity was calculated as the absolute value of the slope of the relationship between the natural logarithm of the Simpson index of similarity (lnS) and spatial distance between pairs of state‐level exotic floras within four latitudinal zones examined. Relative contributions of spatial distance and environmental difference to species turnover between exotic floras were examined. I found that beta diversity decreased monotonically from low to high latitudes: beta diversity for the southernmost zone was shallower than that for the northernmost zone by a factor of 2.6. Regression models of lnS in relation to spatial distance and environmental (climatic and topographical) difference for each latitudinal zone demonstrated that the explanatory power of these variables diminishes monotonically with latitude: the explained variance in lnS is 70.4%, 62.1%, 53.9%, and 33.9%, respectively, for the four latitudinal zones from south to north. For the southernmost zone, 58.3% of the variance in lnS is explained by climate variables and topography, and spatial distance explains only 2.3% of the variance. In contrast, for the northernmost zone, more than half the amount (22.5%) of the explained variance in lnS is attributable to spatial distance, and the remaining (18.9%) of the explained variance is attributable to climate variables and topography.  相似文献   

10.
Aim Species richness is an important feature of communities that varies along elevational gradients. Different patterns of distribution have been described in the literature for various taxonomic groups. This study aims to distinguish between species density and species richness and to describe, for land snails in south‐eastern France, the altitudinal patterns of both at different spatial scales. Location The study was conducted on five calcareous mountains in south‐eastern France (Etoile, Sainte Baume, Sainte Victoire, Ventoux and Queyras). Methods Stratified sampling according to vegetation and altitude was undertaken on five mountains, forming a composite altitudinal gradient ranging from 100 to 3100 m. Visual searching and analysis of turf samples were undertaken to collect land snail species. Species density is defined as the number of species found within quadrats of 25 m2. Species richness is defined as the number of species found within an elevation zone. Different methods involving accumulation curves are used to describe the patterns in species richness. Elevation zones of different sizes are studied. Results Eighty‐seven species of land snails were recovered from 209 samples analysed during this study. Land snail species density, which can vary between 29 and 1 species per 25 m2, decreases logarithmically with increasing altitude along the full gradient. However, on each mountain separately, only a linear decrease is observable. The climatic altitudinal gradient can explain a large part of this pattern, but the great variability suggests that other factors, such as heterogeneity of ground cover, also exert an influence on species density. The altitudinal pattern of species richness varies depending on the spatial resolution of the study. At fine resolution (altitudinal zones of 100 m) land snail species richness forms a plateau at altitudes below 1000 m, before decreasing with increasing altitude. At coarse resolution (altitudinal zones of 500 and 1000 m) the relationship becomes linear. Main conclusions This study reveals that land snail species density and land snail species richness form two different altitudinal patterns. Species density exhibits strong variability between sites of comparable altitude. A large number of samples seem necessary to study altitudinal patterns of species density. Species density decreases logarithmically with increasing altitude. Above a critical altitudinal threshold, this decrease lessens below the rate seen in the first 1500 m. Different methods exist to scale‐up species density to species richness but these often produce different patterns. In this study, the use of accumulation curves has yielded a pattern of species richness showing a plateau at low altitude, whereas simple plotting of known altitudinal ranges from single mountains would have produced stronger mid‐altitudinal peaks. This study shows that not only factors such as temperatures and habitat heterogeneity, but also an ecotone effect, are responsible for the observed patterns.  相似文献   

11.
Distributions were predicted for 1430 native plant species as part of a biodiversity assessment in the forests of south‐west Western Australia. From these predicted distributions, an index of plant species richness was generated for the forest area. The most common predictors for distribution were found to be climatic surfaces incorporating some aspect of seasonality in temperature and precipitation. Although coarse, the index confirmed existing knowledge of areas of high biodiversity within the study area and introduced a new area, the Blackwood Plateau, for consideration as a conservation reserve with high species richness. An additional survey was conducted to sample actual species richness in 11 test sites. When actual richness was regressed against predicted richness, a significant correlation was obtained if both annuals and geophytes were excluded from the analysis. With refinement of the model and further data collection targeted at areas of low effort, the species richness index is proposed as a useful tool for conservation planning.  相似文献   

12.
Two South African mountain fynbos sites, similar in drainage, elevation, slope angle, slope aspect and soil type but with differing fire histories, were studied to measure how the effect of high densities of overstorey proteas in one fire cycle affects the α-diversity levels of the plant community in the following fire-cycle, how their repeated absence due to several short fire-cycles affects their species richness and finally, at what spatial scale such patterns are most appropriately measured. High prefire canopy cover percentages and densities of overstorey proteas increase the postfire α-diversity of understorey species. In addition, the increase in species richness observed occurred for all higher plant life history types present. At sites where one or more short fire cycles resulted in the repeated absence of overstorey proteas, the number of plant species present in the understorey was lower than at a site where overstorey proteas persisted. These results are dependent on the spatial scale at which the α-diversity of understorey species is measured. At small quadrat sizes (< 5 m2), overstorey proteas decrease the number of understorey species present, while at larger quadrat sizes (100 m2) higher species richness is observed. The contradiction in conclusions when α-diversity is measured at different spatial scales can be attributed to the patchiness of fynbos communities. Overstorey proteas play an important role in maintaining the patchiness component of fynbos communities by diminishing the effect of understorey resprouting species, making available regeneration niches for the maintenance of plant species richness. Where small quadrats are used, the effect of patchiness on the dynamics of the mountain fynbos community is lost. Thus, it is the fire history prior to the last fire and how it affects overstorey proteas that is important in the determination of α-diversity levels in mountain fynbos plant communities.  相似文献   

13.
14.
Global patterns of plant diversity   总被引:1,自引:0,他引:1  
Summary Using 94 data sets from across the globe, we explored patterns of mean community species richness, landscape species richness, mean similarity among communities and mosaic diversity. Climate affected community species richness primarily through productivity while other climatic factors were secondary. Climatic equability affected species richness only in temperate regions where richness was greatest at high levels of temperature variability and low levels of precipitation variability. Landscape species richness correlated positively with community species richness. A global gradient in mean similarity existed but was uncorrelated with community species richness. Mean similarity was least and mosaic diversity was greatest between 25 and 30° latitude. The most diverse landscapes (low mean similarity) correlated with warm temperatures, high elevations, large areas and large seasonal temperature fluctuations. The most complex landscapes (high mosaic diversity) correlated with large areas, high productivity and warm winters. We compared diversity measures among continents and found only one significant difference: Australian landscapes have greater mosaic diversity than African landscapes. Based on our analyses we propose two hypotheses: (1) for plants, biotic interactions are more important in structuring landscapes in warmer climates and (2) longer isolated landscapes have more clearly differentiated ecological subunits.  相似文献   

15.
香港索罟群岛植被与植物物种多样性研究   总被引:2,自引:0,他引:2  
索罟群岛植被的次生性很强,以常绿灌丛为主,兼有次生性常绿阔叶林、滨海沙生灌草丛及少量半红树植物,其中灌木、草本植物种类丰富。群岛共有维管植物259种,隶属于85科207属,其中本土野生植物70科193属245种,包括2种受国家或地方保护的植物。其植物区系热带性质明显,56.47%的科属于泛热带分布,94.69%的属为热带分布类型,83.40%的种为热带分布,与邻近的广东内伶仃岛植物区系具有较高的相似性。受岛屿面积、海拔、隔离程度及人类活动等因素影响,群岛各岛屿的植物物种多样性各有特点,其中大鸦洲、小鸦洲植物种类最丰富。  相似文献   

16.
17.
Species turnover, or beta diversity, has been predicted to decrease with increasing latitude, but few studies have tested this relationship. Here, we examined the beta diversity–latitude relationship for vascular plants at a continental scale, based on complete species lists of native vascular plants for entire states or provinces in North America (north of Mexico). We calculated beta diversity as the slope of the relationship between the natural logarithm of the Jaccard index (ln J ) for families, genera or species, and both geographic distance and climate difference within five latitude zones. We found that beta diversity decreased from south to north; within latitude zones, it decreased from species to genera and families. Geographic and climatic distance explained about the same proportion of the variance in ln J in zones south of c. 50°N. North of this latitude, nearly all the explained variance in ln J was attributable to geographic distance. Therefore, decreasing beta diversity from south to north reflects decreasing climate differentiation within more northerly latitude zones, and primarily post-glacial dispersal limitation north of 50°N.  相似文献   

18.
Aim This study compares the direct, macroecological approach (MEM) for modelling species richness (SR) with the more recent approach of stacking predictions from individual species distributions (S‐SDM). We implemented both approaches on the same dataset and discuss their respective theoretical assumptions, strengths and drawbacks. We also tested how both approaches performed in reproducing observed patterns of SR along an elevational gradient. Location Two study areas in the Alps of Switzerland. Methods We implemented MEM by relating the species counts to environmental predictors with statistical models, assuming a Poisson distribution. S‐SDM was implemented by modelling each species distribution individually and then stacking the obtained prediction maps in three different ways – summing binary predictions, summing random draws of binomial trials and summing predicted probabilities – to obtain a final species count. Results The direct MEM approach yields nearly unbiased predictions centred around the observed mean values, but with a lower correlation between predictions and observations, than that achieved by the S‐SDM approaches. This method also cannot provide any information on species identity and, thus, community composition. It does, however, accurately reproduce the hump‐shaped pattern of SR observed along the elevational gradient. The S‐SDM approach summing binary maps can predict individual species and thus communities, but tends to overpredict SR. The two other S‐SDM approaches – the summed binomial trials based on predicted probabilities and summed predicted probabilities – do not overpredict richness, but they predict many competing end points of assembly or they lose the individual species predictions, respectively. Furthermore, all S‐SDM approaches fail to appropriately reproduce the observed hump‐shaped patterns of SR along the elevational gradient. Main conclusions Macroecological approach and S‐SDM have complementary strengths. We suggest that both could be used in combination to obtain better SR predictions by following the suggestion of constraining S‐SDM by MEM predictions.  相似文献   

19.
山地植物物种丰富度海拔分布格局是生物多样性研究的热点之一。以往研究中一般将山体划分为等海拔间距的高度带, 以分析物种丰富度的垂直格局, 其缺陷在于因各高度带面积不相等而可比性下降。为消除面积不相等的影响, 作者利用数字高程数据(DEM, Digital Elevation Model)在地理信息系统(GIS)工具支持下, 尝试将贺兰山(海拔范围1,300–3,500 m)划分为等面积的数个高度带, 从而分析其物种丰富度的海拔格局。结果表明: (1) 贺兰山物种丰富度呈现为单峰式海拔格局, 峰值出现在海拔2,000 m附近。(2) 逐步回归分析显示, 坡度异质性是解释物种丰富度海拔分布格局的最优因子。高度带的坡度异质性越大, 意味着地形的起伏变化越大, 反映出生境类型越趋多样化, 从而可维持多个物种的共存。(3) 贺兰山植物物种丰富度在海拔2,000 m 附近达到峰值, 可能与植被演变历史、气候条件、地形复杂度、生态过渡带和中间膨胀效应的共同影响有关。(4) 对山体进行等面积划带, 可直接消除面积不相等带来的影响, 与等间距划带的方法相比, 尤其在物种海拔分布信息准确度较高时更具优势。  相似文献   

20.
The aim of this study is to analyse the vascular flora and the local climate along an altitudinal gradient in the Lefka Ori massif Crete and to evaluate the potential effects of climate change on the plant diversity of the sub-alpine and alpine zones. It provides a quantitative/qualitative analysis of vegetation-environment relationships for four summits along an altitude gradient on the Lefka Ori massif Crete (1664–2339 m). The GLORIA multi-summit approach was used to provide vegetation and floristic data together with temperature records for every summit. Species richness and species turnover was calculated together with floristic similarity between the summits. 70 species were recorded, 20 of which were endemic, belonging to 23 different families. Cretan endemics dominate at these high altitudes. Species richness and turnover decreased with altitude. The two highest summits showed greater floristic similarity. Only 20% of the total flora recorded reaches the highest summit while 10% is common among summits. Overall there was a 4.96°C decrease in temperature along the 675 m gradient. Given a scenario of temperature increase the ecotone between the sub-alpine and alpine zone would be likely to have the greatest species turnover. Southern exposures are likely to be invaded first by thermophilous species while northern exposures are likely to be more resistant to changes. Species distribution shifts will also depend on habitat availability. Many, already threatened, local endemic species will be affected first.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号