首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In intestinal helminth infections, Th2 immune respones are generally associated with mucin secretion for worm expulsion from the host intestine. In particular, IL-4 and IL-13 are the important cytokines related with intestinal mucus production via STAT6 signalling in nematode infections. However, this perspective has never been studied in Gymnophalloides seoi infection. The present study aimed to observe the STAT6 signalling and cytokine responses in C57BL/6 mice, a mouse strain resistant to infection with this trematode. The results showed that worm expulsion occurred actively during days 1-2 post-infection (PI), when goblet cells began to proliferate in the small intestine. The STAT6 gene expression in the mouse spleen became remarkable from day 2 PI. Moreover, G. seoi infection induced a significant increase of IL-13 from day 4 PI in the spleen of infected mice. Our results suggested that goblet cell hyperplasia and worm expulsion in G. seoi-infected mice should be induced by STAT6 signalling, in which IL-13 may be involved as a dominant triggering cytokine.  相似文献   

2.
The changing patterns of goblet cell hyperplasia, intestinal epithelial cell turnover, and intestinal motility were studied in ICR and C57BL/6 mice infected with Gymnophalloides seoi (Digenea: Gymnophallidae). Whereas ICR mice retained G. seoi worms until day 7 post-infection (PI), C57BL/6 mice showed a rapid worm expulsion within day 3 PI. Immunosuppression with Depo-Medrol significantly delayed the worm expulsion in C57BL/6 mice. Goblet cell counts were increased in both strains of mice, peaking at day 1 PI in C57BL/6 mice and slowly increasing until day 7 PI in ICR mice. In C57BL/6 mice infected with G. seoi, newly proliferating intestinal epithelial cells were remarkably increased in the crypt, and the increase was the highest at day 1 PI. However, in ICR mice, newly proliferating intestinal epithelial cells increased slowly from day 1 to day 7 PI. Intestinal motility was increased in G. seoi-infected mice, and its chronological pattern was highly correlated with the worm load in both strains of mice. Meanwhile, immunosuppression of C57BL/6 mice abrogated the goblet cell proliferation, reduced the epithelial cell proliferation, and suppressed the intestinal motility. Goblet cell hyperplasia, increased intestinal epithelial cell turnover, and increased intestinal motility should be important mucosal defense mechanisms in G. seoi-infected C57BL/6 mice.  相似文献   

3.
Worm recovery rate, mucosal mast cells (MMCs), eosinophils and serum IgE concentration in rats were investigated after orally feeding 300 Haplorchis taichui metacercariae to male rats. The duodenal, jejunal and ileal tissue sections were stained with 1% alcian blue and 0.5% safranin-O for MMC count. Eosinophil count and the serum IgE concentration assay were measured from cardiac puncture blood. The average worm recovery rates were 20.00%, 13.00%, 0.67%, 1.67% and 0.00% on day 3, 7, 14, 21 and 28 post-infection (PI), respectively. The number of MMCs in the infected rats were significantly higher than in the controls (P < 0.01), reaching a peak on day 21 PI. They decreased thereafter, with the decline in worm recovery. Eosinophil count and Serum IgE concentration were also increased but not significantly higher than the controls. However, they showed a positive relationship to worm recovery. It could be concluded from the results that MMCs, eosinophils and IgE may play an important role in the expulsion of H. taichui from rat intestine. However, the mechanism by which the MMC result in the helminth expulsion still need to be understood, and it is recommended that other cells such as goblet cells be studied further.  相似文献   

4.
Infections with the parasitic helminth, Nippostrongylus brasiliensis, cause changes in rat small intestinal goblet cell mucin, particularly in the peripheral sugar residues of oligosaccharide. These changes may correlate with expulsion. In this study, we examined changes in mucin oligosaccharides caused by primary infection and reinfection with N. brasiliensis, using two monoclonal antibodies, HCM31 and PGM34, that react with sialomucin and sulfomucin, respectively. Enzyme-linked immunosorbent assay of jejunal mucins showed that the relative reactivity of mucins with HCM31, but not PGM34, increased up to 16 days after primary infection and 6 days after reinfection, the times when the worms were expelled from the rats. Immunohistochemical studies confirmed that goblet cells stained with HCM31 greatly increased at the time of worm expulsion. These results indicate that the marked increase observed in HCM31-reactive sialomucins may be related to expulsion of the worms.  相似文献   

5.
Mice concurrently infected with the rodent piroplasms Babesia hylomysci or B. microti during a primary infection with the nematode Trichuris muris showed marked immunodepression, and the normal immune expulsion of the nematode was delayed. Immunodepression was most severe when the Babesia infections reached peak parasitaemia during the preexpulsion phase of the worm infection. Decline in parasitaemia to subpatent levels was associated with a reappearance of the immune response and expulsion of the worm. Babesia infections had little effect upon the expulsion of challenge infections of T. muris from mice previously immunized against the worm. Acute Babesia infections were found to exert a profound immunodepressive effect upon the agglutinating antibody response of mice to sheep red blood cells.  相似文献   

6.
The effects of concurrent P. berghei or T. brucei infections on the immune expulsion of primary and challenge infections of T. muris from CFLP strain mice have been examined. CFLP mice usually expel the nematode 18–21 days after a primary infection and within 4–6 days after a challenge infection. Both acute malaria and trypanosome infections initiated at the same time as the T. muris infection suppressed worm expulsion; when the protozoal infections were started 7 days after the T. muris infection worm expulsion was suppressed in a proportion of the mice. Acute trypanosome and malaria infections delayed the expulsion of a challenge infection from immune mice, but in the case of P. berghei the delay was short-lived.  相似文献   

7.
Worm expulsion is known to occur in mammalian hosts exposed to mono-species helminth infections, whilst this phenomenon is poorly described in avian hosts. Mono-species infections, however, are rather rare under natural circumstances. Therefore, we quantified the extent and duration of worm expulsion by chickens experimentally infected with both Ascaridia galli and Heterakis gallinarum, and investigated the accompanying humoral and cell-mediated host immune responses in association with population dynamics of the worms. Results demonstrated the strong co-expulsion of the two ascarid species in three phases. The expulsion patterns were characterized by non-linear alterations separated by species-specific time thresholds. Ascaridia galli burden decreased at a daily expulsion rate (e) of 4.3 worms up to a threshold of 30.5 days p.i., followed by a much lower second expulsion rate (e = 0.46), which resulted in almost, but not entirely, complete expulsion. Heterakis gallinarum was able to induce reinfection within the experimental period (9 weeks). First generation H. gallinarum worms were expelled at a daily rate of e = 0.8 worms until 36.4 days p.i., and thereafter almost no expulsion occurred. Data on both humoral and tissue-specific cellular immune responses collectively indicated that antibody production in chickens with multispecies ascarid infections is triggered by Th2 polarisation. Local Th2 immune responses and mucin-regulating genes are associated with the regulation of worm expulsion. In conclusion, the chicken host is able to eliminate the vast majority of both A. galli and H. gallinarum in three distinct phases. Worm expulsion was strongly associated with the developmental stages of the worms, where the elimination of juvenile stages was specifically targeted. A very small percentage of worms was nevertheless able to survive, reach maturity and induce reinfection if given sufficient time to complete their life cycle. Both humoral and local immune responses were associated with worm expulsion.  相似文献   

8.
Type 2 immune responses are essential in protection against intestinal helminth infections. In this study we show that IL-22, a cytokine important in defence against bacterial infections in the intestinal tract, is also a critical mediator of anti-helminth immunity. After infection with Nippostrongylus brasiliensis, a rodent hookworm, IL-22-deficient mice showed impaired worm expulsion despite normal levels of type 2 cytokine production. The impaired worm expulsion correlated with reduced goblet cell hyperplasia and reduced expression of goblet cell markers. We further confirmed our findings in a second nematode model, the murine whipworm Trichuris muris. T.muris infected IL-22-deficient mice had a similar phenotype to that seen in N.brasiliensis infection, with impaired worm expulsion and reduced goblet cell hyperplasia. Ex vivo and in vitro analysis demonstrated that IL-22 is able to directly induce the expression of several goblet cell markers, including mucins. Taken together, our findings reveal that IL-22 plays an important role in goblet cell activation, and thus, a key role in anti-helminth immunity.  相似文献   

9.
Recent work has established that chloroform extracts of ram semen and fractions of these extracts accelerate rejection of the nematode, Nippostrongylus brasiliensis, from the intestine of rats when injected intra-duodenally on day 6 of a primary infection (6). It was also shown that the administration of aspirin and d-propoxyphene hydrochloride (d-PP), potent inhibitors of prostaglandin action (7, 8), prevented the expulsion of worms which normally occurs between days 10 and 16 of a primary infection with N. brasiliensis. In the present study, we have established that there is a direct correlation between smooth muscle contracting activity and the capacity of individual semen fractions to accelerate worm expulsion. Methylation destroyed both smooth muscle contracting activity and the capacity of semen fractions to cause worm expulsion. Contraction of smooth muscle induced by the most active semen fraction (S.A.F. 1) was not inhibited by the amine antagonists mepyramine maleate and bromylsergic acid diethylamide. In addition, contractions induced in rabbit duodenum segments by 5-hydroxytryptamine were not inhibited by aspirin. These findings indicate that the semen fractions do not contain physiologically significant levels of the amines, histamine and 5-hydroxytryptamine, and this suggests that the capacity of semen fractions to cause worm expulsion is due to prostaglandins. This conclusion is supported by the observation that the most active fraction S.A.F. 1 contained bands with RF values which corresponded with the RF values of synthetic prostaglandins in thin layer chromatography. Furthermore, the intra-duodenal injection of synthetic prostaglandins also caused worm expulsion.  相似文献   

10.
Irradiation prevented the accelerated expulsion of Trichinella spiralis from mice immunized by transfer of immune mesenteric lymph node cells (IMLNC) or by prior infection. Nevertheless, worms in irradiated immune mice were smaller and less fecund than those in controls. In adoptively immunized and irradiated mice expulsion could not be achieved by increasing the numbers of IMLNC transferred, although the effect upon worm length was more severe. Thus IMLNC express a direct, anti-worm immunity which is independent of their role in worm expulsion. IMLNC cause expulsion in irradiated mice only when adequate levels of bone marrow-derived cells are available. The results are discussed in terms of a possible antibody-mediated basis for direct anti-worm immunity.  相似文献   

11.
Alizadeh H. and Wakelin D. 1982. Comparison of rapid expulsion of Trichinella spiralis in mice and rats. International Journal for Parasitology12: 65–73. Primary infections of Tricliinella spiralis in both NIH mice and Wistar rats resulted in increased levels of mucosal mast cells and goblet cells. In mice the numbers of both cell types rose sharply before worm expulsion (days 8–10), remained at an increased level for a short time and declined quickly, reaching control levels on day 14 for goblet cells and between days 28 and 35 for mast cells. In contrast, in rats, the numbers of goblet cells and mast cells increased during worm expulsion and remained above control levels for a prolonged period. Challenge infections given shortly after expulsion of a primary infection (day 14) were expelled rapidly, worm loss being virtually complete with 24 h. In mice this response to challenge was short-lived and persisted only until day 16 after primary infection. After this time, challenge worms were expelled more slowly after infection. In rats the rapid expulsion response was expressed for at least 7 weeks after primary infection. Mice and rats showed differences in the conditions of infection necessary to prime for rapid expulsion, mice requiring larger and longer duration primary infections, but the expression of the response appeared to be similar in both species. In mice it was shown that rapid expulsion of T. spiralis was a response evoked specifically by prior infection with this species; infections with other intestinal nematodes had no effect. Similarly, the effect upon challenge infection was also specific to T. spiralis. The rapidity with which challenge infections are expelled suggests that either the specific inflammatory changes generated during primary infection result in an environment that is unsuitable for establishment of subsequent infections or that challenge infections provide a stimulus that can provoke an almost instantaneous response in the primed intestine. The relationship of the observed cellular changes to such mechanisms is discussed.  相似文献   

12.
The effects of anti-allergic drugs on intestinal mastocytosis and the expulsion of Neodiplostomum seoulense were observed in Sprague-Dawley rats, after oral infection with 500 metacercariae. The drugs used were hydroxyzine (a histamine receptor H1 blocker), cimetidine (a H2 blocker), cyclosporin-A (a helper T-cell suppressant), and prednisolone (a T- and B-cell suppressant). Infected, but untreated controls, and uninfected controls, were prepared. Worm recovery rate and intestinal mastocytosis were measured on weeks 1, 2, 3, 5, and 7 post-infection. Compared with the infected controls, worm expulsion was significantly (P < 0.05) delayed in hydroxyzine- and cimetidine-treated rats, despite mastocytosis being equally marked in the duodenum of all three groups. In the cyclosporin-A- and prednisolone-treated groups, mastocytosis was suppressed, but worm expulsion was only slightly delayed, without statistical significance. Our results suggest that binding of histamine to its receptors on intestinal smooth muscles is more important in terms of the expulsion of N. seoulense from rats than the levels of histamine alone, or mastocytosis.  相似文献   

13.
Rats infected orally with Trichinella spiralis developed an immunity that was induced by and expressed against separate phases of the parasite's enteral life cycle. Infectious muscle larvae generated an immune response (rapid expulsion) that was directed against the very early intestinal infection and resulted in the expulsion of worms within 24 hr. This response eliminated more than 95% of worms in an oral challenge inoculum. Developing larvae (preadults) also induced an immune response that was expressed against adult worms. The effect on adults was dependent upon continuous exposure of worms to the immune environment throughout their enteral larval development. Immunity induced by preadult T. spiralis was not expressed against adult worms transferred from nonimmune rats. While adult worms were resistant to the immunity engendered by preadults they induced an efficient immunity that was autospecific. Both “preadult” and “adult” immunities were expressed in depression of worm fecundity as well as in the expulsion of adults from the gut. However, the two reactions differed in respect to their kinetics and their efficiency against various worm burdens. Preadult immunity was directed mainly against fecundity whereas adult immunity favored worm expulsion. All responses (rapid expulsion, preadult and adult immunity, and antifecundity) acted synergistically to produce sterile immunity against challenge infections of up to 5000 muscle larvae. These findings indicate that the host protective response to T. spiralis is a complex, multifactorial process that operates sequentially and synergistically to protect the host against reinfection.  相似文献   

14.
The consequences of prior and concurrent infection with two species of nematodes were studied in rats. Primary infection with Strongyloides ratti adversely affected the development of a secondary Trichinella spiralis infection. Both immediate and delayed challenge with T. spiralis, following the expulsion of the previous S. ratti infection, reduced the percentage of worm recovery of the former as well as their fecundities and lengths. It is suggested that nonspecific inflammation produced by one species, during the peak period of worm expulsion, was not responsible for the accelerated rate of expulsion of the other; instead a direct, specific cross-immunity was probably operative affecting the survival of the challenge species. The response elicited by previous experience of the intestinal phase was reciprocal, but there was evidence of an enhancing effect by the muscle larval stages of T. spiralis on S. ratti. Rats concurrently infected with both species expelled S. ratti more rapidly than T. spiralis. Possible mechanisms underlying the interaction between the two species are suggested and discussed.  相似文献   

15.
Rats were immunized through an initial infection with 1,000 filariform larvae (L3) of Nippostrongylus brasiliensis and after complete expulsion of worms they were challenged with 1,000 L3 of Strongyloides venezuelensis to investigate whether cross-resistance developed against a heterologous parasite. Nippostrongylus brasiliensis-immunized rats developed a partial cross-resistance against S. venezuelensis migrating larvae (MSL3) in the lungs and adult worms in the small intestine. The population of MSL3 in the lungs were significantly lower (P < 0.05) in immunized rats (22.0 +/- 7.4) compared with controls (105.0 +/- 27.6). The populations of adult worms, egg output and fecundity were initially decreased but from day 14 post-challenge they did not show any significant difference between immunized and control rats. However, the length of worm in immunized rat was revealed as retardation. Peripheral blood eosinophilia was significantly decreased (P < 0.05) on day 7 post-challenge and then gradually increased, which peaked on day 42 post-challenge when most of the worms were expelled. These results suggest that peripheral blood eosinophilia is strongly involved in the worm establishment and expulsion mechanisms.  相似文献   

16.
Trypanosoma musculi infections were given to mice of different strains before, at the same time, and after an infection with 400 Trichinella spiralis. Examined parameters of the host response to T. spiralis were worm rejection, antifecundity responses, development of immunological memory, and muscle larvae burden. After dual infection, each mouse strain showed characteristic effects on resistance to T. spiralis. This was due to a dynamic interaction between the genes controlling rejection of T. spiralis and those influencing T. musculi growth. C3H mice develop high trypanosome parasitemias. This impairs worm expulsion and the development of memory to T. spiralis when Trypanosoma infections take place on the same day or 7 days before. The C57B1/6 mouse develops low parasitemias and T. musculi infections on the same day, or 7 days before T. spiralis, delaying worm rejection only slightly despite the overall weak capacity of B6 mice to expel worms. NFR-strain mice are strong responders to T. spiralis and also develop low parasitemias. Trypanosome infections on the same day, or after T. spiralis, produce a delay in worm rejection; the former is comparable to C3H mice. However, NFR mice alone showed enhanced rejection of worm when T. musculi infections preceded T. spiralis by 7 days. An unusual feature of C3H mice was that T. musculi infections 7 days before T. spiralis increased antifecundity responses at the same time that worm expulsion was inhibited. Trypanosome infections can therefore modulate distinct antihelminth immune responses in different directions simultaneously. The different outcomes of dual infections compared with single infections provides another selective mechanism by which genetic polymorphisms can be established and maintained in the vertebrate host.  相似文献   

17.
The effect of lactation on the expulsion of adult Trichinella spiralis were studied in: (1) lactating, (2) induced agalactic post-parturient, (3) previously sensitized, and (4) mice sensitized during lactation. The results indicated that lactation was associated with an altered pattern of worm expulsion; i.e. more adult worms were recovered from nonsensitized and sensitized lactating mice than from control mice. Furthermore, neither mice sensitized before nor during lactation demonstrated an immunity to challenge infection.  相似文献   

18.
Thoracic duct lymphocytes (TDL) obtained from rats either on the tenth day of a primary infection (Day 10 TDL) or 1 or 5 weeks after a tertiary infection (hyperimmune TDL) with Nippostrongylus brasiliensis were fractionated into cells lacking (sIg?) or bearing (sIg+) surface immunoglobulin by a rosetting procedure. The abilities of unfractionated TDL, of the two subpopulations, and of the reconstituted cells to confer protection against the parasite were examined. The effector cells which cause worm expulsion were found only in (sIg?) cells from Day 10 TDL and also predominantly in (sIg?) cells from hyperimmune TDL. However, a small but significant degree of protection was conferred by (sIg+) cells from hyperimmune TDL. These results suggest that the mechanisms involved in worm expulsion are regulated by (sIg?) cells but that (sIg+) cells from hyperimmune rats can also contribute to the mechanisms of worm expulsion.  相似文献   

19.
The technique of implanting adult Trichinella spiralis into the intestines of mice has been used to assess the contributions of direct, anti-worm immunity and of intestinal inflammation to worm expulsion. The survival after transfer of worms exposed to an effective adoptive immunity in donors was no different from that of worms taken from control donors. Worms taken from donors 8 days after infection, i.e., shortly before the onset of expulsion, showed no increased susceptibility to an immunity adoptively transferred to the recipient mice. When worms were implanted into mice responding to a prior, oral infection they were expelled rapidly. This expulsion was independent of the age of the worms transferred and took place at the same time as the expulsion of the existing infection.  相似文献   

20.
Previous experiments have shown that a primary infection with 100000 infective larvae of the trichostrongylid Cooperia oncophora allows discrimination between different type of responder animals based on the speed by which the parasite is expelled from the host. In most of the animals (intermediate responders) the expulsion occurs 35-42 days after infection. This experiment was carried out to investigate which mechanisms contribute to the clearance of the parasite from the intestine. Sequential necropsy of the animals 14, 28 and 42 days after infection together with a segmental division of the small intestine, allowed us to characterise essential components associated with development of immunity and expulsion of the parasite from its niche. The results show that during the patent phase of the infection the parasite preferentially resides in the proximal gut. Forty-two days after infection ongoing expulsion is characterised by a migration of the worms to the more distal part of the intestine. Expulsion of the adult worm population appears to be mast-cell independent and is associated with a significant increase in parasite-specific mucous IgA and IgG1 as well as with an influx of eosinophils in the intestinal lamina propria. Although we did not observe a specific lymphocyte recruitment into the intestinal mucosa, the accumulation of eosinophils seems to be mediated by CD4+ cells. We measured significant negative correlations between the number of eosinophils and the expulsion rate of the parasite expressed by sex ratio and ratio eggs per gram faeces. Parasite-specific mucosal IgA levels were negatively correlated to the fecundity of the worms, expressed as number of eggs per female worm. Our results describe the involvement of both eosinophils and mucosal IgA in the regulation of C. oncophora expulsion and suggest the development of a Th2 effector immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号