首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suppression of host cell function by treatment with actinomycin D prior to infection prevented the induction of defective interfering particles of vesicular stomatitis virus, which had been cloned and propagated in cell pretreated with actinomycin D. Replication of defective interfering particles already present in an infecting virus stock, however, was not affected by pretreatment of cells with actinomycin D. Thus, the induction, but not the replication, of defective interfering particles appears to be a host cell function-dependent phenomenon. The implications of this phenomenon for host defense mechanisms against virus infections are discussed.  相似文献   

2.
Purified defective interfering (DI) particles of vesicular stomatitis virus (VSV) inhibit the replication of a heterologous virus, pseudorabies virus (PSR), in hamster (BHK-21) and rabbit (RC-60) cell lines. In contrast to infectious B particles of VSV, UV irradiation of DI particles does not reduce their ability to inhibit PSR replication. However, UV irradiation progressively reduces the ability of DI particles to cause homologous interference with B particle replication. Pretreatment with interferon does not affect the ability of DI particles to inhibit PSR replication in a rabbit cell line (RC-60) in which RNA, but not DNA, viruses are sensitive to the action of interferon. Under similar conditions of interferon pretreatment, the inhibition of PSR by B particles is blocked. These data suggest that de novo VSV RNA or protein synthesis is not required for the inhibition of PSR replication by DI particles. DI particles that inhibit PSR replication also inhibit host RNA and protein synthesis in BHK-21 and RC-60 cells. Based on the results described and data in the literature, it is proposed that the same component of VSV B and DI particles is responsible for most, if not all, of the inhibitory activities of VSV, except homologous interference.  相似文献   

3.
4.
5.
6.
Virus mutants isolated from persistent infections of vesicular stomatitis virus in BHK-21 cells were much less susceptible to interference mediated by the defective interfering particle used to establish the persistent infection. This mutational change occurred as early as 34 days in the persistent infection and continued for over 5 years. The earliest variants showed no oligonucleotide map changes and no difference in the temperature-sensitive phenotype from the original virus, but the later variants exhibited extensive map changes. These results suggest a possible role for defective interfering particles in the selection of the mutants.  相似文献   

7.
RNA genomes from standard vesicular stomatitis virus and two defective interfering (DI) particles dI 0.33 (DI-T) and DI 0.52, were purified and digested with RNase T1. The resulting oligonucleotides were labeled at the 5' end with [32P]ATP and separated by two-dimensional electrophoresis in polyacrylamide gels. All of the major oligonucleotides containing 20 or more nucleotides were sequenced. Those oligonucleotides that were thought to be in common by their migration on polyacrylamide gels actually did have identical sequences. Those oligonucleotides thought to be unique to the DI RNAs either differed by only one nucleotide from oligonucleotides of the standard RNA or contained new sequences which were complementary to known sequences at the 5' end. These data indicate that RNAs from DI particles are not simple deletions but contain point mutations and additional complementary sequences.  相似文献   

8.
Defective interfering particles of vesicular stomatitis virus have been named according to their parental derivation and to their genomic length and physical properties. This suggested uniform nomenclature can be adapted for other virus systems.  相似文献   

9.
The nucleotide sequence of the region which covalently links the complementary strands of the "snapback" RNA of vesicular stomatitis virus, DI011, is (Formula: see text). Both strands of the defective interfering (DI) particle RNA were complementary for their full length and were covalently linked by a single phosphate group. Because the strands were exactly the same length and complementary, template strand and daughter strand nucleocapsids generated during replication of DI 011 were undistinguishable on the basis of sequence, a property not shared by other types of DI particle RNAs. Treatment of the RNA with RNase T1 in high-ionic-strength solutions cleaved the RNA only between positions 1 and 1'. These results and the availability of the guanosine residue in position 1' to kethoxal, a reagent that specifically derivatizes guanosines of single-stranded RNA, suggest that steric constraints keep a small portion of the "turnaround" region in an open configuration. The sequence of the turnaround region was not related in any obvious way to the sequences at the 3' and 5' termini and limited the number of possible models for the origin of this type of DI particle RNA. Two models for the genesis of DI 011 RNA are discussed. We favor one in which the progenitor DI 011 RNA was generated by replication across a nascent replication fork.  相似文献   

10.
The genome structure and terminal sequences of a 'copyback' defective interfering (DI) particle ST1, and a novel complexly rearranged 'snapback' DI particle ST2 of vesicular stomatitis virus have been determined. The ST1 DI genome RNA possesses 54 base long inverted complementary termini, the 5' end of which is homologous to the standard virus genome 5' end. Following this region of inverted complementarity the DI RNA 5' end continues to be homologous to standard virus RNA 5' sequences, whereas the 3' end diverges into sequences within the virus L gene internal sequences. ST2 DI genome RNA does not contain colinear covalently linked plus and minus sense RNA copies of the standard infectious virus RNA 5' terminus as predicted from the prototype snapback DI structure, but instead appears to be a hairpin copy of the ST1 DI RNA genome. This is the first evidence suggesting that DI particles may be generated from RNA templates other than the standard virus RNA. Generation models and the implications of these findings for RNA virus evolution are discussed.  相似文献   

11.
cDNA clones of different portions of the L cistron and 5'-terminal region of the vesicular stomatitis virus genome have been prepared and used to identify the exact site of the deletion in the defective interfering particle, DI-LT. The deletion extends from nucleotide 251 from the beginning of the L gene to a position 342 nucleotides from the end of the genome. The nucleotide sequences flanking the deletion site, as well as those at the ends of the deleted segment, did not contain any obvious vesicular stomatitis virus initiation or termination signals as had been found near the recombination sites in other defective interfering particle RNAs. The results best fit a model for the origin of this type of defective interfering particle in which the polymerase interrupts its synthesis and moves with its nascent daughter strand to a new position on the template and resumes synthesis there, further extending the nascent strand. Neither the interruption nor the resumption of synthesis appears to be in response to the template nucleotide sequence. The sequences of two partial L cistron clones also reveal open reading frames that code for amino acid sequences likely to be the amino and carboxy termini of the L protein.  相似文献   

12.
13.
The replication of the RNA of vesicular stomatitis virus (VSV) defective interfering (DI) particles was established in a defined cell-free system. The transition from synthesis of only the DI-leader RNA to replication of the full-length DI RNA was effected in the system by newly synthesized VSV proteins and occurred in the absence of VSV helper virus. Both positive- and negative-polarity full-length DI RNA were synthesized. Furthermore, the products of RNA replication associated with newly synthesized viral proteins to form complexes that were indistinguishable from authentic DI particle nucleocapsids on the basis of buoyant density and resistance to ribonuclease digestion. The DI-leader RNA did not form ribonuclease-resistant structures. We conclude that this in vitro system successfully executes many of the reactions of VSV DI particle replication and assembly.  相似文献   

14.
I isolated at least 30 different vesicular stomatitis virus defective interfering (DI) genomes, distinguished by chain length, by five independent undiluted passages of a repeatedly cloned virus plaque. Labeling of the 3' hydroxyl ends of these DI genomes and RNase digestion studies demonstrated that the ends of these DI genomes were terminally complementary to different extents (approximately 46 to 200 nucleotides). Mapping studies showed that the complementary ends of all of the DI genomes were derived from the 5' ends of the nondefective minus-strand genome. Regardless of the extent of terminal complementarity, all of the DI genomes synthesized the same 46-nucleotide minus-strand leader RNA.  相似文献   

15.
16.
A comparison of the ability of vesicular stomatitis virus (VSV) to generate and replicate defective interfering (DI) particles in primary chick embryo (CE) and mouse L cells was investigated as a means of analyzing host control over DI-particle synthesis and interfering capacity. Serial undiluted passage of VSV in CE and L cells indicate that VSV-DI particles are generated and (or) replicate with greater efficiency in CE than in L cells. When DI particles accumulate in L cells, they are able to interfere with infectious particle replication. The DI particles from CE cells interfered to the same extent with infectious particle replication in both CE and L cells. L cells, therefore, are not considered 'low-interference' hosts in which DI particles are produced and do not interfere with infectious virus replication, but rather hosts which restrict the production of DI particles.  相似文献   

17.
18.
19.
We sequenced the 5' and 3' RNA termini of 16 defective interfering (DI) particles of vesicular stomatitis virus (VSV) isolated at intervals from persistent infections and from a series of undiluted lytic passages. All DI RNAs exhibited complementary termini, but sequences internal to these termini were extensively rearranged in a variety of ways. Despite extensive rearrangement, these internal sequences (in addition to the termini) apparently are important for DI particle interference properties. Some of these DI particles are derived from multiple intrastrand and interstrand recombination events, and the generation of each can be explained by current replicase error models. During viral evolution in persistent and acute infections, DI particles with specific termini base substitutions are selected. One DI particle exhibits a remarkable clustering of specific A----G (and complementary U----C) substitutions, apparently as a result of repetitive misincorporations by an error-prone viral polymerase complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号