首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition of alkaline phosphatase from green crab (Scylla serrata) by L-cysteine has been studied. The results show that L-cysteine gives a mixed-type inhibition. The progress-of-substrate-reaction method previously described by Tsou [(1988), Adv. Enzymol. Related Areas Mol. Biol. 61, 391–436] was used to study the inactivation kinetics of the enzyme by L-cysteine. The microscopic rate constants were determined for reaction of the inhibitor with the free enzyme and the enzyme–substrate complex (ES) The results show that inactivation of the enzyme by L-cysteine is a slow, reversible reaction. Comparison of the inactivation rate constants of free enzyme and ES suggests that the presence of the substrate offers marked protection of this enzyme against inactivation by L-cysteine.  相似文献   

2.
The inactivation of alkaline phosphatase from green crab (Scylla serrata) by N-bromosuccinimide has been studied using the kinetic method of the substrate reaction during modification of enzyme activity previously described by Tsou [(1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436]. The results show that inactivation of the enzyme is a slow, reversible reaction. The microscopic rate constants for the reaction of the inactivator with free enzyme and the enzyme-substrate complex were determined. Comparison of these rate constants indicates that the presence of substrate offers marked protection of this enzyme against inactivation by N-bromosuccinimide. The above results suggest that the tryptophan residue is essential for activity and is situated at the active site of the enzyme.  相似文献   

3.
The kinetics of thermal inactivation of rabbit muscle lactate dehydrogenase at different temperatures has been studied using the kinetic method for the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou [Adv. Enzymol. Relat. Areas Mol. Biol. (1988), 61, 381–436]. The results show that thermal inactivation of the enzyme is an irreversible reaction. Microscopic rate constants were determined for thermal inactivation of the free enzyme and the enzyme–substrate complex. The inactivation rate constant of the free enzyme is much larger than the rate constant of the enzyme–substrate complex. The results suggest that the presence of the substrate has a certain protective effect against thermal inactivation of the enzyme.  相似文献   

4.
Cysteine residues in prawn (Penaeus vannamei) β-N-acetyl-d-glucosaminidase (NAGase, EC 3.2.1.52) have been modified by p-chloromercuribenzoate (PCMB). The results show that sulfhydryl group is essential for the activity of the enzyme. Inactivation kinetics of the enzyme by mercuric chloride (HgCl2) has been studied using the kinetic method of the substrate reaction during inactivation of enzyme previously described by Tsou. The kinetic results show that the inactivation of the enzyme is an irreversible reaction. The microscopic rate constants for the reaction of Hg2+ with free enzyme and with the enzyme-substrate complex are determined. Comparison of these rate constants indicates that the presence of substrate offers marked protection of this enzyme against inactivation by Hg2+. The above results suggest that the cysteine residue is essential for activity.  相似文献   

5.
The kinetic theory of the substrate reaction during modification of enzyme activity previously described by Tsou [Tsou (1988),Adv. Enzymol. Relat. Areas Mol. Biol. 61, 381–436] has been applied to a study of the kinetics of the course of inactivation of the mitochondrial succinate-ubiquinone reductase by 5,5′-dithiobis-(2-nitro-benzoic acid) (DTNB). The results show that the inactivation of this enzyme by DTNB is a conformation-change-type inhibition which involves a conformational change of the enzyme before inactivation. The microscopic rate constants were determined for the reaction of the inactivator with the enzyme. The presence of the substrate provides marked protection of this enzyme against inactivation by DTNB. The modification reaction of the enzyme using DTNB was shown to follow a triphasic course by following the absorption at 412 nm. Among these reactive thiol groups, the fast-reaction thiol group is essential for the enzyme activity. The results suggest that the essential thiol group is situated at the succinate-binding site of the mitochondrial succinate-ubiquinone reductase.  相似文献   

6.
The inactivation of alkaline phosphatase from green crab (Scylla serrata) by N-bromosuccinimide has been studied using the kinetic method of the substrate reaction during modification of enzyme activity previously described by Tsou [(1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436]. The results show that inactivation of the enzyme is a slow, reversible reaction. The microscopic rate constants for the reaction of the inactivator with free enzyme and the enzyme-substrate complex were determined. Comparison of these rate constants indicates that the presence of substrate offers marked protection of this enzyme against inactivation by N-bromosuccinimide. The above results suggest that the tryptophan residue is essential for activity and is situated at the active site of the enzyme.Abbreviations ALP alkaline phosphatase - PNPP p-nitrophenyl phosphate - NBS N-bromosuccinimide  相似文献   

7.
The kinetics of thermal inactivation of Penaeus penicillatus acid phosphatase have been studied using a kinetic method related to the substrate reaction during irreversible inhibition of the enzyme activity as previously described by Tsou (Adv. Enzymol. Relat. Areas Mol. Biol. (1988) 61, 381-436). The kinetics of thermal inactivation of the enzyme show that the reaction is irreversible. The microscopic rate constants were determined for thermal inactivation of free enzyme and the enzyme--substrate complex. The results show that the presence of substrate has a significant protective effect against thermal inactivation of the enzyme.  相似文献   

8.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, each active site in which contains a tight cluster of two zinc ions and one magnesium ion. Unfolding and inactivation of the enzyme during denaturation in guanidinium chloride (GuHCl) solutions of different concentrations have been compared. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou [(1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436] has been applied to a study on the kinetics of the course of inactivation of the enzyme during denaturation by GuHCl. The rate constants of unfolding and inactivation have been determined. The results show that inactivation occurs before noticeable conformational change can be detected. It is suggested that the active site of green crab alkaline phosphatase containing multiple metal ions is also situated in a limited region of the enzyme molecule that is more fragile to denaturants than the protein as a whole.  相似文献   

9.
A small reactor of immobilized papain was used to gain some knowledge about the effect of immobilization upon the reactivity of the enzyme towards one substrate and various types of inhibitors. A buffer solution containing benzoyl–arginine ethyl ester as substrate was run through a small column of papain immobilized by attachment to agarose beads. The pH of the effluent was measured continuously and provided the data used to calculate the substrate conversion during passage through the reactor. The operation of the system was checked by determining the substrate conversion as a function of flow rate. It proved to operate as theory demanded. The rate and extent of inhibition were measured after addition of various inhibitors to the buffer–substrate solution. The following quantities of immobilized papain were found to be equal within ±20% to those of the free enzyme in solution: the overall activity, the Km of benzoyl–arginine ethyl ester, the Ki of the competitive inhibitor benzoylamino-acetonitrile, the rate of inactivation by chloroacetic acid and by chloroacetamide, the rate of activation by cysteine of the mixed disulfide of papain and cysteine, and the rate of spontaneous reactivation of the KCNO–papain adduct. The inactivation by KCNO proved to be strongly pH dependent. This may explain why the rate of the latter reaction is only 66% of the rate with free enzyme. It is concluded that the rates and equilibrium constants measured in the present reactor system are within ±20% of the values of the dissolved enzyme, provided that the reactions are not strongly pH dependent. Calculation showed there was no diffusion limitation.  相似文献   

10.
The inactivation and unfolding of aminoacyclase (EC 3.5.1.14) during denaturation by different concentrations of trifluoroethanol (TFE) have been studied. A marked decrease in enzyme activity was observed at low TFE concentrations. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity described previously by Tsou [Tsou (1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436] was applied to study the kinetics of the inactivation course of aminoacyclase during denaturation by TFE. The inactivation rate constants for the free enzyme and substrate-enzyme complex were determined by Tsou's method. The inactivation reaction was a monophasic first-order reaction. The kinetics of the unfolding course were a biphasic process consisting of two first-order reactions. At 2% TFE concentration, the inactivation rate of the enzyme was much faster than the unfolding rate. At a higher concentration of TFE (10%), the inactivation rate was too fast to be determined by conventional methods, whereas the unfolding course remained as a biphasic process with fast and slow reactions occurring at measurable rates. The results suggest that the aminoacyclase active site containing Zn2+ ions is situated in a limited and flexible region of the enzyme molecule that is more fragile to the denaturant than the protein as a whole.  相似文献   

11.
Mushroom tyrosinase (EC 1.14.18.1) is a kind of copper-containing oxidase that catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones and then forms brown or black pigments. In the present paper, the effects of dimethyl sulfoxide on the enzyme activity for the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) have been studied. The results show that low concentrations of dimethyl sulfoxide (DMSO) can lead to reversible inactivation of the enzyme, and the IC 50 is estimated to be 2.45 M. Inactivation of the enzyme by DMSO is classified as mixed type. The kinetics of inactivation of mushroom tyrosinase at low concentrations of DMSO solution has been studied using the kinetic method of the substrate reaction. The rate constants of inactivation have been determined. The results show the free enzyme molecule is more fragile than the enzyme–substrate complex in the DMSO solution. It is suggested that the presence of the substrate offers marked protection of this enzyme against inactivation by DMSO.  相似文献   

12.
The effect of L-cysteine on activity of hydrophobic forms of calf intestine alkaline phosphatase was investigated. Apparent inhibition constants for mixed type inhibition have been determined. The kinetic results allow supposing that the mechanism of equilibrium establishment between the inhibitor and enzyme involves the initial rapid formation of intermediate complex and a subsequent slower step leading to its stabilization in the substrate binding site. The microscopic rate constants for slow step of interaction of L-cysteine with alkaline phosphatase have been calculated. Effect of pH on apparent inhibition constants and kinetic parameters for enzymatic reaction in the presence of L-cysteine was analysed.  相似文献   

13.
    
The kinetic theory of the substrate reaction during modification of enzyme activity previously described by Tsou [Tsou (1988),Adv. Enzymol. Relat. Areas Mol. Biol. 61, 381–436] has been applied to a study of the kinetics of the course of inactivation of the mitochondrial succinate-ubiquinone reductase by 5,5-dithiobis-(2-nitro-benzoic acid) (DTNB). The results show that the inactivation of this enzyme by DTNB is a conformation-change-type inhibition which involves a conformational change of the enzyme before inactivation. The microscopic rate constants were determined for the reaction of the inactivator with the enzyme. The presence of the substrate provides marked protection of this enzyme against inactivation by DTNB. The modification reaction of the enzyme using DTNB was shown to follow a triphasic course by following the absorption at 412 nm. Among these reactive thiol groups, the fast-reaction thiol group is essential for the enzyme activity. The results suggest that the essential thiol group is situated at the succinate-binding site of the mitochondrial succinate-ubiquinone reductase.  相似文献   

14.
Pyrocatechol was studied as an inhibitor of jack bean urease in 20 mM phosphate buffer, pH 7.0, 25 degrees C. The inhibition was monitored by an incubation procedure in the absence of substrate and reaction progress studies in the presence of substrate. It was found that pyrocatechol acted as a time- and concentration dependent irreversible inactivator of urease. The dependence of the residual activity of urease on the incubation time showed that the rate of inhibition increased with time until there was total loss of enzyme activity. The inactivation process followed a non-pseudo-first order reaction. The obtained reaction progress curves were found to be time-dependent. The plots showed that the rate of the enzyme reaction in the final stages reached zero. From protection experiments it appeared that thiol-compounds such as L-cysteine, 2-mercaptoethanol and dithiothreitol prevented urease from pyrocatechol inactivation as well as the substrate, urea, and the competitive inhibitor boric acid. These results proved that the urease active site was involved in the pyrocatechol inactivation.  相似文献   

15.
The inactivation kinetics of glucoso-6-phosphate dehydrogenase (GPDH) and its complexes with glucoso-6-phosphate and NADP+ was characterized in aqueous solutions at 36–47°C under treatment with low frequency (27 kHz, 60 W/cm2) and high frequency ultrasound (880 kHz, 1 W/cm2). To this end, we measured three effective first-order inactivation rate constants: thermal k in * , total (thermal and ultrasonic) k in, and ultrasonic k in(US). The values of the constants were found to be higher for the free enzyme than for its complexes GPDH-GP and GPDH-NADP+ at all temperatures, which confirms the enzyme stabilization by its substrate and cofactor under both thermal and ultrasonic inactivation. Effective values of the activation energies (E a) were determined and the preexponential factors of the rate constants and thermodynamic activation parameters of inactivation processes (ΔH*, ΔS*, and ΔG*) were calculated from the temperature dependences of the inactivation rate constants of GPDH and its complexes. The sonication of aqueous solutions of free GPDH and its complexes was accompanied by a reduction of E a and ΔH* values in comparison with the corresponding values for thermal inactivation. The E a, ΔH*, and ΔS* inactivation values for GPDH are lower than the corresponding values for its complexes. A linear dependence between the growth of the ΔH* and ΔS* values was observed for all the inactivation processes for free GPDH and its complexes.  相似文献   

16.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, each active site in which contains a tight cluster of two zinc ions and one magnesium ion. Unfolding and inactivation of the enzyme during denaturation in guanidinium chloride (GuHCl) solutions of different concentrations have been compared. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou [(1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436] has been applied to a study on the kinetics of the course of inactivation of the enzyme during denaturation by GuHCl. The rate constants of unfolding and inactivation have been determined. The results show that inactivation occurs before noticeable conformational change can be detected. It is suggested that the active site of green crab alkaline phosphatase containing multiple metal ions is also situated in a limited region of the enzyme molecule that is more fragile to denaturants than the protein as a whole.  相似文献   

17.
During denaturation by sodium dodecyl sulfate (SDS), aminoacylase shows a rapid decrease in activity with increasing concentration of the detergent to reach complete inactivation at 1.0 mM SDS. The denatured minus native-enzyme difference spectrum showed two negative peaks at 287 and 295 nm. With the increase of concentration of SDS, both negative peaks increased in magnitude to reach maximal values at 5.0 mM SDS. The fluorescence emission intensity of the enzyme decreased, whereas there was no red shift of emission maximum in SDS solutions of increasing concentration. In the SDS concentration regions employed in the present study, no marked changes of secondary structure of the enzyme have been observed by following the changes in far-ultraviolet CD spectra. The inactivation of this enzyme has been followed and compared with the unfolding observed during denaturation in SDS solutions. A marked inactivation is already evident at low SDS concentration before significant conformational changes can be detected by ultraviolet absorbance and fluorescence changes. The inactivation rate constants of free enzyme and substrate-enzyme complex were determined by the kinetics method of the substrate reaction in the presence of inactivator previously described by Tsou [Tsou (1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436]. It was found that substrate protects against inactivation and at the same SDS concentrations, the inactivation rate of the free enzyme is much higher than the unfolding rate. The above results show that the active sites of metal enzyme containing Zn2+ are also situated in a limited and flexible region of the enzyme molecule that is more fragile to denaturants than the protein as a whole.  相似文献   

18.
The course of inactivation of yeast alcohol dehydrogenase (YADH) using 4,4′-dithiodipyridine (DSDP) has been studied in this paper. The results show that the reaction mechanism between DSDP and YADH is a competitive, complexing inhibition. The microscopic constants for the inactivation of the free enzyme and the enzyme-substrate complex were determined. The presence of the substrate NAD+ offers strong protection for this enzyme against inactivation by DSDP. The above results suggest that two Cys residues are essential for activity and are situated at the active site. These essential Cys residues should be Cys-46 and Cys-174 which are ligands to the catalytic zinc ion. Another Cys residue, which can be modified by DSDP, is non-essential for activity of the enzyme.  相似文献   

19.
The binding of substrate and product analogs to phenylalanine ammonia-lyase (EC 4.3.1.5) from maize has been studied by a protection method. The ligand dissociation constants, KL, were estimated from the variation with [L] of the pseudo-first-order rate constants for enzyme inactivation by nitromethane. The phenylalanine analogs d- and l-2-aminooxy-3-phenylpropionic acid showed KL, values over 20,000-fold lower than the Km for l-phenylalanine. From these and other KL values it is deduced that when the enzyme binds l-phenylalanine the structural free energy stored in the protein is higher than when it binds the superinhibitors. Models for binding d- and l-phenylalanine and the superinhibitors are described. The enantiomeric pairs are considered to have similar KL values because they pack into the active site in a mirror-image relationship. If the elimination reaction approximates to the least-motion course deduced on stereoelectronic grounds, the mirror-image packing of the superinhibitors into the active site mimics the conformation inferred for a transition state in the elimination. It appears, therefore, that structural changes take place in the enzyme as the transition state conformation is approached causing stored free energy to be released. This lowers the activation free energy for the elimination reaction and accounts for the strong binding by the above analogs.  相似文献   

20.
Kasamo K 《Plant physiology》1988,87(1):126-129
Proton-translocating ATPase (H+-ATPase) was purified from mung bean (Vigna radiata L.) roots. Treatment of this enzyme with the arginine-specific reagent 2,3-butanedione in the presence of borate at 37°C (pH 7.0), caused a marked decrease in its activity. Under this condition, half-maximal inhibition was brought about by 20 millimolar 2,3-butanedione at 12 minutes. MgATP and MgADP, the physiological substrate and competitive inhibitor of the ATPase, respectively, provided partial protection against inactivation. Loss of activity followed pseudo-first order kinetics with respect to 2,3-butanedione concentration, and double log plots of pseudo-first order rate constants versus reagent concentration gave a curve with a slope of 0.984. Thus, inactivation may possibly result from reaction of one arginine residue at each active site of the enzyme. The results obtained from the present study indicate that at least one arginyl residue performs an essential function in the plasma membrane H+-ATPase, probably at the catalytic site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号