首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
N-methyl-D-aspartate receptors (NMDARs), critical mediators of both physiologic and pathologic neurological signaling, have previously been shown to be sensitive to mechanical stretch through the loss of its native Mg(2+) block. However, the regulation of this mechanosensitivity has yet to be further explored. Furthermore, as it has become apparent that NMDAR-mediated signaling is dependent on specific NMDAR subtypes, as governed by the identity of the NR2 subunit, a crucial unanswered question is the role of subunit composition in observed NMDAR mechanosensitivity. Here, we used a recombinant system to assess the mechanosensitivity of specific subtypes and demonstrate that the mechanosensitive property is uniquely governed by the NR2B subunit. NR1/NR2B NMDARs displayed significant stretch sensitivity, whereas NR1/NR2A NMDARs did not respond to stretch. Furthermore, NR2B mechanosensitivity was regulated by PKC activity, because PKC inhibition reduced stretch responses in transfected HEK 293 cells and primary cortical neurons. Finally, using NR2B point mutations, we identified a PKC phosphorylation site, Ser-1323 on NR2B, as a unique critical regulator of stretch sensitivity. These data suggest that the selective mechanosensitivity of NR2B can significantly impact neuronal response to traumatic brain injury and illustrate that the mechanical tone of the neuron can be dynamically regulated by PKC activity.  相似文献   

2.
The N-methyl-D-aspartate receptor (NMDAR) plays a critical role in synaptic plasticity. Post-translational modifications of NMDARs, such as phosphorylation, alter both the activity and trafficking properties of NMDARs. Ubiquitination is increasingly being recognized as another post-translational modification that can alter synaptic protein composition and function. We identified Mind bomb-2 as an E3 ubiquitin ligase that interacts with and ubiquitinates the NR2B subunit of the NMDAR in mammalian cells. The protein-protein interaction and the ubiquitination of the NR2B subunit were found to be enhanced in a Fyn phosphorylation-dependent manner. Immunocytochemical studies reveal that Mind bomb-2 is localized to postsynaptic sites and colocalizes with the NMDAR in apical dendrites of hippocampal neurons. Furthermore, we show that NMDAR activity is down-regulated by Mind bomb-2. These results identify a specific E3 ubiquitin ligase as a novel interactant with the NR2B subunit and suggest a possible mechanism for the regulation of NMDAR function involving both phosphorylation and ubiquitination.  相似文献   

3.
N-methyl-D-aspartate (NMDA) receptors are involved in mediating excitatory synaptic transmissions in the brain and have been implicated in numerous neurologic disorders. The proximal amino-terminal domains (ATDs) of NMDA receptors constitute many modulatory binding sites that may serve as potential drug targets. There are few biochemical and structural data on the ATDs of NMDA receptors, as it is difficult to produce the functional proteins. Here an optimized method was established to reconstitute the insoluble recombinant ATD of NMDA receptor NR2B subunit (ATD2B) through productive refolding of 6xHis-ATD2B protein from inclusion bodies. Circular dichroism and dynamic light scattering characterizations revealed that the solubilized and refolded 6xHis-ATD2B adopted well-defined secondary structures and monodispersity.More significantly, the soluble 6xHis-ATD2B specifically bound ifenprodil to saturation. Ifenprodil bound to 6xHis-ATD2B with a dissociation constant (KD) of 127.5+/-45 nM, which was within the range of the IC50 determined electrophysiologically. This is the first report on a functional recombinant ATD2B with a characterized KD.  相似文献   

4.
5.
The N-methyl-d-aspartate (NMDA) receptor is a glutamate gated cation channel prevalent in the postsynaptic membranes of central nervous system neurons. The neurotransmitter receptor complex is thought to represent a tetramer where variable NR2 or NR3 polypeptides form heteromeric assemblies with an obligatory NR1 subunit. Recently, we showed that cardiac myocytes from perinatal rats transiently express the NMDA receptor subunit NR2B, the function of which in heart is unknown. To characterize the cardiac NR2B protein, we determined its subcellular distribution and specific molecular interaction partners. By immunostaining of rat heart tissue slices and acutely dissociated cardiac myocytes, the NR2B antigen was localized at the sarcomeric Z-bands. Using immunoprecipitation of detergent-solubilized NR2B protein and subsequent analysis employing matrix-assisted laser desorption/ionization time of flight mass spectrometry, ryanodine receptor 2 was identified as a molecular interaction partner of the cardiac NR2B polypeptide. Differences in antibody recognition indicate that the cardiac NR2B polypeptide carries a structurally altered C terminus as compared with the NR2B variant prevalent in central nervous system. Based on its localization and protein interaction, the function of cardiac NR2B protein may relate to mechanosensitivity or play a role in the regulation of the contractile apparatus of neonatal heart.  相似文献   

6.
Neurosteroids are endogenously derived compounds, mediating rapid effects in the central nervous system. They participate in vital processes, including memory and learning, neuroplasticity, and neuroprotection in Alzheimer’s disease. However, the mechanisms behind those effects remain to be elucidated. The neurosteroids pregnenolone sulphate (PS) and pregnanolone sulphate (3α5βS) have recently been shown to allosterically alter the NMDA receptor in nanomolar concentrations. Those studies featured ifenprodil, which is a dirty drug, with affinity to many targets. In this study we compare the NMDA receptors in the hippocampus to recombinant NMDA receptors, using [3H]-MK-801 as radioligand. The results show that neurosteroids modulate the ifenprodil binding kinetics in a narrow concentration interval, addressing it to the NR2B subunit, since no effects were recorded at recombinant NR1/NR2A receptors. The effects were also seen as changes in the manner ifenprodil displaced or induced the dissociation of [3H]-MK-801. It indicates that the neurosteroidal effects indeed alter the ion pore of the NMDA receptor, why it is reasonable to believe that these findings have physiological relevance.  相似文献   

7.
The N-methyl-D-aspartate receptor (NMDA-R) has been inter alia implicated in synaptic plasticity, brain development and emotional processes. The NMDA-R is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. We generated NR2C-2B mutant mice in which an insertion of NR2B cDNA into the gene locus of the NR2C gene replaced NR2C by NR2B expression throughout the brain. This NR2C-2B mutant was used to examine whether an NMDA-R subunit exchange in juvenile mice would affect emotional behaviors and acetylcholine (ACh), dopamine (DA) and serotonin (5-HT) content in the frontal cortex (FC) and brain structures, which are part of the brain defense system, such as the periaqueductal grey matter (PAG). Juvenile, 1-month-old NR2C-2B mice showed increased open arm avoidance in the elevated plus-maze and increased fear-induced immobility. In terms of brain neurochemistry, NR2C-2B mice showed an increase in 5-HT levels in the FC at the age of 2 months. A correlational analysis revealed that mice with low open arms avoidance had high levels of ACh in the PAG but reduced 5-HT levels in the FC. Animals which showed high levels of fear-induced immobility also had high levels of 5-HT in the FC. These results suggest that the replacement of subunit NR2C by NR2B in juvenile mice increases anxiety- and fear-related behaviors possibly due to changes in FC-5-HT and PAG-ACh levels.  相似文献   

8.
NMDA receptors (NMDARs), fundamental to learning and memory and implicated in certain neurological disorders, are heterotetrameric complexes composed of two NR1 and two NR2 subunits. The function of synaptic NMDARs in postnatal principal forebrain neurons is typically attributed to diheteromeric NR1/NR2A and NR1/NR2B receptors, despite compelling evidence for triheteromeric NR1/NR2A/NR2B receptors. In synapses, the properties of triheteromeric NMDARs could thus far not be distinguished from those of mixtures of diheteromeric NMDARs. To find a signature of NR1/NR2A/NR2B receptors, we have employed two gene-targeted mouse lines, expressing either NR1/NR2A or NR1/NR2B receptors without NR1/NR2A/NR2B receptors, and compared their synaptic properties with those of wild type. In acute hippocampal slices of mutants older than 4 weeks we found a distinct voltage dependence of NMDA R-mediated excitatory postsynaptic current (NMDA EPSC) decay time for the two diheteromeric NMDARs. In wild-type mice, NMDA EPSCs unveiled the NR1/NR2A characteristic for this voltage-dependent deactivation exclusively, indicating that the contribution of NR1/NR2B receptors to evoked NMDA EPSCs is negligible in adult CA3-to-CA1 synapses. The presence of NR1/NR2A/NR2B receptors was obvious from properties that could not be explained by a mixture of diheteromeric NR1/NR2A and NR1/NR2B receptors or by the presence of NR1/NR2A receptors alone. The decay time for NMDA EPSCs in wild type was slower than that for NR1/NR2A receptors, and the sensitivity of NMDA EPSCs to NR2B-directed NMDAR antagonists was 50%. Thus, NR2B is prominent in adult hippocampal synapses as an integral part of NR1/NR2A/NR2B receptors.  相似文献   

9.
The N-methyl-d-aspartate (NMDA) receptors play critical roles in synaptic plasticity, neuronal development, and excitotoxicity. Tyrosine phosphorylation of NMDA receptors by Src-family tyrosine kinases such as Fyn is implicated in synaptic plasticity. To precisely address the roles of NMDA receptor tyrosine phosphorylation, we identified Fyn-mediated phosphorylation sites on the GluR epsilon 2 (NR2B) subunit of NMDA receptors. Seven out of 25 tyrosine residues in the C-terminal cytoplasmic region of GluR epsilon 2 were phosphorylated by Fyn in vitro. Of these 7 residues, Tyr-1252, Tyr-1336, and Tyr-1472 in GluR epsilon 2 were phosphorylated in human embryonic kidney fibroblasts when co-expressed with active Fyn, and Tyr-1472 was the major phosphorylation site in this system. We then generated rabbit polyclonal antibodies specific to Tyr-1472-phosphorylated GluR epsilon 2 and showed that Tyr-1472 of GluR epsilon 2 was indeed phosphorylated in murine brain using the antibodies. Importantly, Tyr-1472 phosphorylation was greatly reduced in fyn mutant mice. Moreover, Tyr-1472 phosphorylation became evident when hippocampal long term potentiation started to be observed, and its magnitude became larger in murine brain. Finally, Tyr-1472 phosphorylation was significantly enhanced after induction of long term potentiation in the hippocampal CA1 region. These data suggest that Tyr-1472 phosphorylation of GluR epsilon 2 is important for synaptic plasticity.  相似文献   

10.
Neurotoxicity induced by beta-amyloid peptide (Abeta) involves glutamate toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) receptors and elevation of intracellular calcium. However, the heterogeneity of the NMDA receptors, frequently composed of NR1 and NR2A-D subunits, has been less studied. Thus, we determined the contribution of NMDA receptor subtypes on Abeta(1-40) toxicity in HEK293 cells transiently expressing NR1/NR2A or NR1/NR2B subunits. Analysis of lactate dehydrogenase (LDH) release and trypan blue exclusion revealed an increase in Abeta(1-40) toxicity upon NR1/NR2A expression, compared to NR1/NR2B, indicating loss of plasma membrane integrity. Furthermore, Abeta(1-40) decreased intracellular ATP in cells expressing NR1/NR2A. MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate), a noncompetitive NMDA receptor antagonist, partially prevented the decrease in cell viability and the energy impairment. These differences were not accounted for by the activation of caspases 2, 3, 8 and 9 or calpains or by DNA fragmentation, excluding the hypothesis of apoptosis. Functional NR1/NR2A and NR1/NR2B receptor subtypes were further evidenced by single-cell calcium imaging. Stimulation of NR1/NR2A receptors with NMDA/glycine revealed an increase in intracellular calcium in cells pre-exposed to Abeta(1-40). Opposite effects were observed upon activation of NR1/NR2B receptors. These results suggest that NR1/NR2A-composed NMDA receptors mediate necrotic cell death in HEK293 cells exposed to Abeta(1-40) through changes in calcium homeostasis.  相似文献   

11.
Calcium influx through the N-methyl-d-aspartate (NMDA)-type glutamate receptor and activation of calcium/calmodulin-dependent kinase II (CaMKII) are critical events in certain forms of synaptic plasticity. We have previously shown that autophosphorylation of CaMKII induces high-affinity binding to the NR2B subunit of the NMDA receptor (Strack, S., and Colbran, R. J. (1998) J. Biol. Chem. 273, 20689-20692). Here, we show that residues 1290-1309 in the cytosolic tail of NR2B are critical for CaMKII binding and identify by site-directed mutagenesis several key residues (Lys(1292), Leu(1298), Arg(1299), Arg(1300), Gln(1301), and Ser(1303)). Phosphorylation of NR2B at Ser(1303) by CaMKII inhibits binding and promotes slow dissociation of preformed CaMKII.NR2B complexes. Peptide competition studies imply a role for the CaMKII catalytic domain, but not the substrate-binding pocket, in the association with NR2B. However, analysis of monomeric CaMKII mutants indicates that the holoenzyme structure may also be important for stable association with NR2B. Residues 1260-1316 of NR2B are sufficient to direct the subcellular localization of CaMKII in intact cells and to confer dynamic regulation by calcium influx. Furthermore, mutation of residues in the CaMKII-binding domain in full-length NR2B bidirectionally modulates colocalization with CaMKII after NMDA receptor activation, suggesting a dynamic model for the translocation of CaMKII to postsynaptic targets.  相似文献   

12.
The N-methyl-D-aspartate (NMDA) type of glutamate receptor (NMDAR) plays central roles in normal and pathological neuronal functioning. We have examined the regulation of the NR1 subunit of the NMDAR in response to excessive activation of this receptor in in vitro and in vivo models of excitotoxicity. NR1 protein expression in cultured cortical neurons was specifically reduced by stimulation with 100 microM NMDA or glutamate. NMDA decreased NR1 protein amounts by 71% after 8 h. Low NMDA concentrations (< or = 10 microM) had no effect. NR1 down-regulation was inhibited by the general NMDAR antagonist DL-AP5 and also by ifenprodil, which specifically antagonizes NMDARs containing NR2B subunits. Arrest of NMDAR signaling with DL-AP5 after brief exposure to NMDA did not prevent subsequent NR1 decrease. Down-regulation of NR1 did not involve calpain cleavage but resulted from a decrease in de novo synthesis consequence of reduced mRNA amounts. In contrast, NMDA did not alter the expression of NR2A mRNA or newly synthesized protein. In neurons transiently transfected with an NR1 promoter/luciferase reporter construct, promoter activity was reduced by 68% after 2 h of stimulation with NMDA, and its inhibition required extracellular calcium. A similar mechanism of autoregulation of the receptor probably operates during cerebral ischemia, because NR1 mRNA and protein were strongly decreased at early stages of blood reperfusion in the infarcted brains of rats subjected to occlusion of the middle cerebral artery. Because NR1 is the obligatory subunit of NMDARs, this regulatory mechanism will be fundamental to NMDAR functioning.  相似文献   

13.
PC12 cells contain NR1 mRNA but lack significant expression of NR1 protein suggesting translational or posttranslational regulation. Translational activity of NR1 mRNA in PC12 cells was examined by sucrose gradient fractionation and by heterologous luciferase NR1 gene expression studies. The cosedimentation and association of NR1 mRNA with large polyribosomes (polysomes) confirmed the translatability of NR1 message in PC12 cells. Possible initiation and/or elongation defects during the translation of NR1 mRNAs were investigated by cyclohexamide treatment. The marked decline in the number of ribosomes associated with NR1 mRNA after prolonged exposure to cyclohexamide suggested that initiation was limiting translation of NR1 mRNA in PC12 cells. Consequently, the effect of the 5' and 3' untranslated regions (UTRs) on translation was examined using fusion constructs consisting of the luciferase coding region fused to either or both the 5' UTR and 3' UTR of NR1. The transfection of PC12 cells with the luciferase NR1-UTR fusion constructs revealed that the 3' UTR of NR1 had a significant inhibitory effect on luciferase expression. In contrast, the 5' UTR of NR1 had no inhibitory effect on mRNA translation in PC12 cells. The results from this study indicate that the translation of NR1 mRNA in PC12 cells may be impeded at initiation and this inhibition may be regulated at least in part through the 3' UTR of NR1.  相似文献   

14.
The N-methyl-d-aspartate (NMDA) receptor subunits NR2 possess extended intracellular C-terminal domains by which they can directly interact with a large number of postsynaptic density (PSD) proteins involved in synaptic clustering and signaling. We have previously shown that PSD-associated alpha-calmodulin kinase II (alphaCaMKII) binds with high affinity to the C-terminal domain of the NR2A subunit. Here, we show that residues 1412-1419 of the cytosolic tail of NR2A are critical for alphaCaMKII binding, and we identify, by site directed mutagenesis, PKC-dependent phosphorylation of NR2A(Ser(1416)) as a key mechanism in inhibiting alphaCaMKII-binding and promoting dissociation of alphaCaMKII.NR2A complex. In addition, we show that stimulation of PKC activity in hippocampal slices either with phorbol esters or with the mGluRs specific agonist trans-1-amino-1,3- cyclopentanedicarboxylic acid (t-ACPD) decreases alphaCaMKII binding to NMDA receptor complex. Thus, our data provide clues on understanding the molecular basis of a direct cross-talk between alphaCaMKII and PKC pathways in the postsynaptic compartment.  相似文献   

15.
16.
17.
NMDA receptors represent a subtype of the ionotropic glutamate receptor family, comprising three classes of subunits (NR1, NR2A-D, NR3), which exhibit distinct patterns of regional and developmental expression in the CNS. Recently, some NMDA receptor subunits have also been described in adult extraneuronal tissues and keratinocytes. However, their developmental expression patterns are currently unknown. With use of RT-PCR and western blot analysis, the expression of NMDA receptor subunit NR2B was investigated in the developing rat heart. NR2B mRNA and protein were detected in heart tissue of rats from embryonic day 14 until postnatal day 21 but disappeared 10 weeks after birth. In contrast, no NMDA receptor subunit NR1, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR2, or anchoring postsynaptic density protein-95 could be detected in rat heart at any developmental stage. Confocal microscopy of cultured cardiac myocytes (CMs) from neonatal rats revealed distinct NR2B staining mainly of intracellular structures. However, no functional NMDA receptor could be detected on CMs by whole-cell recordings. In conclusion, high concentrations of NR2B protein can be detected in early rat heart development, but its function still remains elusive.  相似文献   

18.
Philpot BD  Cho KK  Bear MF 《Neuron》2007,53(4):495-502
Light deprivation lowers the threshold for long-term depression (LTD) and long-term potentiation (LTP) in visual cortex by a process termed metaplasticity, but the mechanism is unknown. The decreased LTD/P threshold correlates with a decrease in the ratio of NR2A to NR2B subunits of cortical NMDA receptors (NMDARs) and a slowing of NMDAR-mediated excitatory postsynaptic currents (EPSCs). However, whether and how changes in NR2 subunit expression contribute to LTD and LTP have been controversial. In the present study, we used an NR2A knockout (KO) mouse to examine the role of this subunit in the experience-dependent modulation of NMDAR properties, LTD, and LTP. We found that deletion of NR2A abrogates the effects of visual experience on NMDAR EPSCs and prevents metaplasticity of LTP and LTD. These data support the hypothesis that experience-dependent changes in NR2A/B are functionally significant and yield a mechanism for an adjustable synaptic modification threshold in visual cortex.  相似文献   

19.
In cerebral cortex there is a developmental switch from NR2B- to NR2A-containing NMDA receptors (NMDARs) driven by activity and sensory experience. This subunit switch alters NMDAR function, influences synaptic plasticity, and its dysregulation is associated with neurological disorders. However, the mechanisms driving the subunit switch are not known. Here, we show in hippocampal CA1 pyramidal neurons that the NR2B to NR2A switch driven acutely by activity requires activation of NMDARs and mGluR5, involves PLC, Ca(2+) release from IP(3)R-dependent stores, and PKC activity. In mGluR5 knockout mice the developmental NR2B-NR2A switch in CA1 is deficient. Moreover, in visual cortex of mGluR5 knockout mice, the NR2B-NR2A switch evoked in?vivo by visual experience is absent. Thus, we establish that mGluR5 and NMDARs are required for the activity-dependent NR2B-NR2A switch and play a critical role in experience-dependent regulation of NMDAR subunit composition in?vivo.  相似文献   

20.
N-methyl-D-aspartate receptors (NMDARs) are Ca(2+)-permeable, ligand-gated, nonselective cation channels that function as neuronal synaptic receptors but which are also expressed in multiple peripheral tissues. Here, we show for the first time that NMDAR subunits NR3a and NR3b are highly expressed in the neonatal kidney and that there is continued expression of NR3a in the renal medulla and papilla of the adult mouse. NR3a was also expressed in mIMCD-3 cells, where it was found that hypoxia and hypertonicity upregulated NR3a expression. Using short-hairpin (sh) RNA-based knockdown, a stable inner medullary collecting duct (IMCD) cell line was established that had ~80% decrease in NR3a. Knockdown cells exhibited an increased basal intracellular calcium concentration, reduced cell proliferation, and increased cell death. In addition, NR3a knockdown cells exhibited reduced water transport in response to the addition of vasopressin, suggesting an alteration in aquaporin-2 (AQP2) expression/function. Consistent with this notion, we demonstrate decreased surface expression of glycosylated AQP2 in IMCD cells transfected with NR3a shRNA. To determine whether this also occurred in vivo, we compared AQP2 levels in wild-type vs. in NR3a(-/-) mice. Total AQP2 protein levels in the outer and inner medulla were significantly reduced in knockout mice compared with control mice. Finally, NR3a(-/-) mice showed a significant delay in their ability to increase urine osmolality during water restriction. Thus NR3a may play a renoprotective role in collecting duct cells. Therefore, under conditions that are associated with high vasopressin levels, NR3a, by maintaining low intracellular calcium levels, protects the function of the principal cells to reabsorb water and thereby increase medullary osmolality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号