首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Calcium-dependent protein kinases (CDPKs) belong to a unique family of enzymes containing a single polypeptide chain with a kinase domain at the amino terminus and a putative calcium-binding EF hands structure at the carboxyl terminus. From Arabidopsis thaliana, we have cloned three distinct cDNA sequences encoding CDPKs, which were designated as atcdpk6, atcdpk9 and atcdpk19. The full-length cDNA sequences for atcdpk6, atcdpk9 and atcdpk19 encode proteins with a molecular weight of 59343, 55376 and 59947, respectively. Recombinant atCDPK6 and atCDPK9 proteins were fully active as kinases whose activities were induced by Ca2+. Biochemical studies suggested the presence of an autoinhibitory domain in the junction between the kinase domain and the EF hands structure. Serial deletion of the four EF hands of atCDPK6 demonstrated that the integrity of the four EF hands was crucial to the Ca2+ response. All the three atcdpk genes were ubiquitously expressed in the plant as demonstrated by RNA gel blot experiments. Comparison of the genomic sequences suggested that the three cdpk genes have evolved differently. Using antibodies against atCDPK6 and atCDPK9 for immunohistochemical experiments, CDPKs were found to be expressed in specific cell types in a temporally and developmentally regulated manner.  相似文献   

3.
Many short (<400 bp) interspersed sequence repeats exist in bacteria, yet little is known about their origins, mode of generation, or possible function. Here, we present a comprehensive analysis of 18 different previously identified repeated DNA elements, bcr1-bcr18 (?kstad OA, Hegna I, Lindback T, Rishovd AL, Kolst? AB. 1999. Genome organization is not conserved between Bacillus cereus and Bacillus subtilis. Microbiology. 145:621-631.; Tourasse NJ, Helgason E, ?kstad OA, Hegna IK, Kolst? AB. 2006. The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol. 101:579-593.), in 36 sequenced genomes from the Bacillus cereus group of bacteria. This group consists of genetically closely related species with variable pathogenic specificity toward different hosts and includes among others B. anthracis, B. cereus, and B. thuringiensis. The B. cereus group repeat elements could be classified into three categories with different properties: Group A elements (bcr1-bcr3) exhibited highly variable copy numbers ranging from 4 to 116 copies per strain, showed a nonconserved chromosomal distribution pattern between strains, and displayed several features characteristic of mobile elements. Group B repeats (bcr4-bcr6) were present in 0-10 copies per strain and were associated with strain-specific genes and disruptions of genome synteny, implying a possible contribution to genome rearrangements and/or horizontal gene transfer events. bcr5, in particular, was associated with large gene clusters showing resemblance to integrons. In agreement with their potentially mobile nature or involvement in horizontal transfers, the sequences of the repeats from Groups A and B (bcr1-bcr6) followed a phylogeny different from that of the host strains. Conversely, repeats from Group C (bcr7-bcr18) had a conserved chromosomal location and orthologous gene neighbors in the investigated B. cereus group genomes, and their phylogeny matched that of the host chromosome. Several of the group C repeats exhibited a conserved secondary structure or had parts of the structure conserved, possibly indicating functional RNAs. Accordingly, five of the repeats in group C overlapped regions encoding previously characterized riboswitches. Similarly, other group C repeats could represent novel riboswitches, encode small RNAs, and/or constitute other types of regulatory elements with specific biological functions. The current analysis suggests that the multitude of repeat elements identified in the B. cereus group promote genome dynamics and plasticity and could contribute to the flexible and adaptive life style of these bacteria.  相似文献   

4.
5.
The ubiquitin proteasome pathway in plants has been shown to be important for many developmental processes. The E3 ubiquitin-protein ligases facilitate transfer of the ubiquitin moiety to substrate proteins. Many E3 ligases contain cullin proteins as core subunits. Here, we show that Arabidopsis (Arabidopsis thaliana) AtCUL3 proteins interact in yeast two-hybrid and in vitro pull-down assays with proteins containing a BTB/POZ (broad complex, tramtrack, bric-a-brac/pox virus and zinc finger) motif. By changing specific amino acid residues within the proteins, critical parts of the cullin and BTB/POZ proteins are defined that are required for these kinds of interactions. In addition, we show that AtCUL3 proteins assemble with the RING-finger protein AtRBX1 and are targets for the RUB-conjugation pathway. The analysis of AtCUL3a and AtCUL3b expression as well as several BTB/POZ-MATH genes indicates that these genes are expressed in all parts of the plant. The results presented here provide strong evidence that AtCUL3a and AtCUL3b can assemble in Arabidopsis with BTB/POZ-MATH and AtRBX1 proteins to form functional E3 ligases.  相似文献   

6.
In this paper we report the characterization of three novel members of the Arabidopsis shaggy-related protein kinase (ASK) multigene family, named ASKdzeta (ASK), ASKetha (ASK) and ASKiota (ASK). The proteins encoded by the ASK genes share a highly conserved catalytic protein kinase domain and show about 70% identity to SHAGGY (SGG) and glycogen synthase kinase-3 (GSK-3) from Drosophila and rat respectively. SGG is an ubiquitous intracellular component of the wingless signalling pathway that establishes cell fate and/or pattern formation in Drosophila. At least ten different ASK genes are expected to be present per haploid genome of A. thaliana. Different amino- and carboxy-terminal extensions distinguish different ASK family members. Five ASK gene sequences were analysed and shown to be present as single-copy genes in the Arabidopsis genome. A comparison based on the highly conserved catalytic domain sequences of all known sequences of the GSK-3 subfamily of protein kinases demonstrated a clear distinction between the plant and the animal kinases. Furthermore, we established the presence of at least three distinct groups of plant homologues of SGG/GSK-3. These different groups probably reflect biochemical and/or biological properties of these kinases. The differential expression patterns of five ASK genes were accessed by northern and in situ hybridization experiments using gene-specific probes. While ASK is expressed in the whole embryo during its development, ASK expression is limited to the suspensor cells. No signal was detected for ASK, ASK and ASK in developing embryos.  相似文献   

7.

Background  

Tonoplast intrinsic proteins (TIPs) are widely used as markers for vacuolar compartments in higher plants. Ten TIP isoforms are encoded by the Arabidopsis genome. For several isoforms, the tissue and cell specific pattern of expression are not known.  相似文献   

8.
Importin alpha plays a pivotal role in the classical nuclear protein import pathway. Importin alpha shuttles between nucleus and cytoplasm, binds nuclear localization signal-bearing proteins, and functions as an adapter to access the importin beta-dependent import pathway. In contrast to what is found for importin beta, several isoforms of importin alpha, which can be grouped into three subfamilies, exist in higher eucaryotes. We describe here a novel member of the human family, importin alpha7. To analyze specific functions of the distinct importin alpha proteins, we recombinantly expressed and purified five human importin alpha's along with importin alpha from Xenopus and Saccharomyces cerevisiae. Binding affinity studies showed that all importin alpha proteins from humans or Xenopus bind their import receptor (importin beta) and their export receptor (CAS) with only marginal differences. Using an in vitro import assay based on permeabilized HeLa cells, we compared the import substrate specificities of the various importin alpha proteins. When the substrates were tested singly, only the import of RCC1 showed a strong preference for one family member, importin alpha3, whereas most of the other substrates were imported by all importin alpha proteins with similar efficiencies. However, strikingly different substrate preferences of the various importin alpha proteins were revealed when two substrates were offered simultaneously.  相似文献   

9.
10.
11.
Rapid, auxin-responsive degradation of multiple auxin/indole-3-acetic acid (Aux/IAA) proteins is essential for plant growth and development. Domain II residues were previously shown to be required for the degradation of several Arabidopsis thaliana Aux/IAA proteins. We examined the degradation of additional full-length family members and the proteolytic importance of N-terminal residues outside domain II using luciferase (LUC) fusions. Elimination of domain I did not affect degradation. However, substituting an Arg for a conserved Lys between domains I and II specifically impaired basal degradation without compromising the auxin-mediated acceleration of degradation. IAA8, IAA9, and IAA28 contain domain II and a conserved Lys, but they were degraded more slowly than previously characterized family members when expressed as LUC fusions, suggesting that sequences outside domain II influence proteolysis. We analyzed the degradation of IAA31, with a region somewhat similar to domain II but without the conserved Lys, and of IAA20, which lacks domain II and the conserved Lys. Both IAA20:LUC and epitope-tagged IAA20 were long-lived, and their longevity was not influenced by auxin. Epitope-tagged IAA31 was long-lived, like IAA20, but by contrast, it showed accelerated degradation in response to auxin. The existence of long-lived and auxin-insensitive Aux/IAA proteins suggeststhat they may play a novel role in auxin signaling.  相似文献   

12.
The family of human cell surface heterodimers which includes VLA-1 and VLA-2 is now shown to include three additional heterodimers, here called VLA-3, VLA-4, and VLA-5. Each of these separate VLA structures is composed of a distinct alpha subunit (Mr 110,000-200,000 nonreduced) noncovalently associated with a common beta subunit (Mr 110,000 nonreduced). Chemical cross-linking experiments provided evidence that each VLA complex exists predominantly as a 1:1 alpha beta heterodimer. The VLA proteins are widely distributed, with one or more of the heterodimers present on nearly all cell types tested. Evidence for five distinct VLA alpha subunits was obtained from differences observed in antibody recognition, cell distribution patterns, two-dimensional gel analyses, and V8 protease cleavage patterns. On the other hand, the beta subunit present in each heterodimer was immunochemically and electrophoretically indistinguishable, and yielded identical V8 cleavage fragments. Immunoblotting experiments revealed that besides the Mr 110,000 beta normally seen, another beta protein was present that is smaller in size (Mr 90,000 nonreduced), altered or deficient in glycosylation, and not available for cell surface radiolabeling.  相似文献   

13.
Here, a complete study is described of all the genes and isoenzymes for aspartate aminotransferase (AspAT) present in Arabidopsis thaliana . Four classes of cDNAs representing four distinct AspAT genes ( ASP1—ASP4 ) have been cloned from Arabidopsis . Sequence analysis of the cDNAs suggests that the encoded proteins are targeted to different subcellular compartments. ASP1 encodes a mitochondrial form of AspAT, ASP3 encodes a chloroplastic/plastidic form of AspAT, whereas ASP2 and ASP4 each encode cytosolic forms of AspAT. Three distinct AspAT holoenzymes (AAT1—AAT3) were resolved by activity gel analysis. Organelle isolation reveals that AAT1 is mitochondrial-localized, AAT3 is plastid-localized, and AAT2 is cytosolic. Gene-specific Northern analysis reveals that each Asp mRNA accumulates differentially with respect to organ-type. However, the individual Asp mRNAs show no dramatic fluctuations in response to environmental stimuli such as light. Southern analysis reveals that four distinct nuclear genes probably represent the entire AspAT gene family in Arabidopsis . These molecular studies shed light on the subcellular synthesis of aspartate in Arabidopsis and suggest that some of the AspAT isoenzymes may play overlapping roles in plant nitrogen metabolism.  相似文献   

14.
15.
A novel gene, TMEM114, was annotated as a member of the claudin gene family and was subsequently associated as a cause of autosomal dominant cataract because of a translocation in its putative promoter. Our bioinformatic and molecular analyses of TMEM114, and the closely related TMEM235, demonstrate that these proteins are more closely related to members of the voltage dependent calcium channel gamma subunit family. TMEM114 and TMEM235 differed from claudins in terms of localisation in polarised epithelial cells and by the presence of N-linked glycans. By gene expression knockdown in Xenopus tropicalis we also demonstrate a role for Tmem114 in eye development.  相似文献   

16.
Receptor expressed in lymphoid tissues (RELT) proteins are recently described surface receptors belonging to the larger TNF receptor family. To improve our understanding of RELT-mediated signal transduction, we performed a screen for RELT-interacting proteins. Phospholipid Scramblase 1 (PLSCR1) was identified through a yeast two-hybrid genetic screen utilizing the intracellular portion of the RELT family member, RELL1, as bait. PLSCR1 was observed to physically interact with all known RELT family members as determined by co-immunoprecipitation experiments. The protein kinase, oxidative stress responsive 1 (OSR1) was previously shown to interact and phosphorylate all three RELT family members. In our study, no physical association was observed between OSR1 and PLSCR1 alone. However, in the presence of RELT, OSR1 was capable of co-immunoprecipitating PLSCR1, suggesting the formation of a protein complex between RELT, OSR1, and PLSCR1. In addition, OSR1 phosphorylated PLSCR1 in an in vitro kinase assay, but only in the presence of RELT, suggesting a functional multiprotein complex. RELT and PLSCR1 co-localized in intracellular regions of human embryonic kidney-293 cells, with RELT overexpression appearing to alter the localization of PLSCR1. These studies demonstrate that RELT family members physically interact with PLSCR1, and that these interactions may regulate the phosphorylation of PLSCR1 by OSR1.  相似文献   

17.
Lipoprotein-mediated delivery of lipids in mammals involves endocytic receptors of the low density lipoprotein (LDL) receptor (LDLR) family. In contrast, in insects, the lipoprotein, lipophorin (Lp), functions as a reusable lipid shuttle in lipid delivery, and these animals, therefore, were not supposed to use endocytic receptors. However, recent data indicate additional endocytic uptake of Lp, mediated by a Lp receptor (LpR) of the LDLR family. The two N-terminal domains of LDLR family members are involved in ligand binding and dissociation, respectively, and are composed of a mosaic of multiple repeats. The three C-terminal domains, viz., the optional O-linked glycosylation domain, the transmembrane domain, and the intracellular domain, are of a non-repetitive sequence. The present classification of newly discovered LDLR family members, including the LpRs, bears no relevance to physiological function. Therefore, as a novel approach, the C-terminal domains of LDLR family members across the entire animal kingdom were used to perform a sequence comparison analysis in combination with a phylogenetic tree analysis. The LpRs appeared to segregate into a specific group distinct from the groups encompassing the other family members, and each of the three C-terminal domains of the insect receptors is composed of unique set of sequence motifs. Based on conservation of sequence motifs and organization of these motifs in the domains, LpR resembles most the groups of the LDLRs, very low density lipoprotein (VLDL) receptors, and vitellogenin receptors. However, in sequence aspects in which LpR deviates from these three receptor groups, it most notably resembles LDLR-related protein-2, or megalin. These features might explain the functional differences disclosed between insect and mammalian lipoprotein receptors.  相似文献   

18.
Three reading frames called ccmF(N1), ccmF(N2), and ccmF(c) are found in the mitochondrial genome of Arabidopsis. These sequences are similar to regions of the bacterial gene ccmF involved in cytochrome c maturation. ccmF genes are always absent from animal and fungi genomes but are found in mitochondrial genomes of land plant and several evolutionary distant eukaryotes. In Arabidopsis, ccmF(N2) despite the absence of a classical initiation codon is not a pseudo gene. The 3 ccmF genes of Arabidopsis are expressed at the protein level. Their products are integral proteins of the mitochondrial inner membrane with in total 11 to 13 predicted transmembrane helices. The conserved WWD domain of CcmF(N2) is localized in the inter membrane space. The 3 CcmF proteins are all detected in a high molecular mass complex of 500 kDa by Blue Native PAGE. Direct interaction between CcmF(N2) and both CcmF(N1) and CcmF(C) is shown with the yeast two-hybrid split ubiquitin system, but no interaction is observed between CcmF(N1) and CcmF(C). Similarly, interaction is detected between CcmF(N2) and apocytochrome c but also with apocytochrome c(1). Finally, CcmF(N1) and CcmF(N2) both interact with CCMH previously shown to interact as well with cytochrome c. This strengthens the hypothesis that CcmF and CCMH make a complex that performs the assembly of heme with c-type apocytochromes in plant mitochondria.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号