首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intraerythrocytic developmental stages of the malaria parasite Plasmodium falciparum are responsible for the clinical symptoms associated with malaria tropica. The non-infected human erythrocyte is a terminally differentiated cell that is unable to synthesize proteins and lipids de novo, and it is incapable of importing a number of solutes that are essential for parasite proliferation. Approximately 12-15 h after invasion the parasitized cell undergoes a marked increase in its permeability to a variety of different solutes present in the extracellular milieu. The increase is due to the induction in the erythrocyte membrane of 'new permeability pathways' which have been characterized in some detail in terms of their transport and electrophysiological properties, but which are yet to be defined at a molecular level. Here we show that these pathways are resistant to trypsin but are abolished by treatment of intact infected erythrocytes with chymotrypsin. On resuspension of chymotrypsinized cells in chymotrypsin-free medium the pathways progressively reappear, a process that can be inhibited by cytotoxic agents, and by brefeldin A which inhibits protein secretion. Our results provide evidence for the involvement of parasite encoded proteins in the generation of the pathways, either as components of the pathways themselves or as auxiliary factors.  相似文献   

2.
Physiological erythrocyte removal is associated with a selective increase in expression of neoantigens on erythrocytes and their vesicles, and subsequent autologous antibody binding and phagocytosis. Chronic erythrocyte transfusion often leads to immunization and the formation of alloantibodies and autoantibodies. We investigated whether erythrocyte storage leads to the increased expression of non-physiological antigens. Immunoprecipitations were performed with erythrocytes and vesicles from blood bank erythrocyte concentrates of increasing storage periods, using patient plasma containing erythrocyte autoantibodies. Immunoprecipitate composition was identified using proteomics. Patient plasma antibody binding increased with erythrocyte storage time, while the opposite was observed for healthy volunteer plasma, showing that pathology-associated antigenicity changes during erythrocyte storage. Several membrane proteins were identified as candidate antigens. The protein complexes that were precipitated by the patient antibodies in erythrocytes were different from the ones in the vesicles formed during erythrocyte storage, indicating that the storage-associated vesicles have a different immunization potential. Soluble immune mediators including complement factors were present in the patient plasma immunoprecipitates, but not in the allogeneic control immunoprecipitates. The results support the theory that disturbed erythrocyte aging during storage of erythrocyte concentrates contributes to transfusion-induced alloantibody and autoantibody formation.  相似文献   

3.
The distributions of ankyrin, spectrin, band 3, and glycophorin A were examined in Plasmodium falciparum-infected erythrocytes by immunoelectron microscopy to determine whether movement of parasite proteins and membrane vesicles between the parasitophorous vacuole membrane and erythrocyte surface membrane involves internalization of host membrane skeleton proteins. Monospecific rabbit antisera to spectrin, band 3 and ankyrin and a mouse monoclonal antibody to glycophorin A reacted with these erythrocyte proteins in infected and uninfected human erythrocytes by immunoblotting. Cross-reacting malarial proteins were not detected. The rabbit sera also failed to immunoprecipitate [3H]isoleucine labeled malarial proteins from Triton X-100 and sodium dodecyl sulfate (SDS) extracts of infected erythrocytes. These three antibodies as well as the monoclonal antibody to glycophorin A bound to the membrane skeleton of infected and uninfected erythrocytes. The parasitophorous vacuole membrane was devoid of bound antibody, a result indicating that this membrane contains little, if any, of these host membrane proteins. With ring-, trophozoite- and schizont-infected erythrocytes, spectrin, band 3 and glycophorin A were absent from intracellular membranes including Maurer's clefts and other vesicles in the erythrocyte cytoplasm. In contrast, Maurer's clefts were specifically labeled by anti-ankyrin antibody. There was a slight, corresponding decrease in labeling of the membrane skeleton of infected erythrocytes. A second, morphologically distinct population of circular, vesicle-like membranes in the erythrocyte cytoplasm was not labeled with anti-ankyrin antibody. We conclude that membrane movement between the host erythrocyte surface membrane and parasitophorous vacuole membrane involves preferential sorting of ankyrin into a subpopulation of cytoplasmic membranes.  相似文献   

4.
5.
6.
The proteins of the erythrocyte membrane   总被引:9,自引:0,他引:9  
  相似文献   

7.
8.
9.
10.
11.
Native disulfide bond formation in proteins   总被引:3,自引:0,他引:3  
Native disulfide bond formation is critical for the proper folding of many proteins. Recent studies using newly identified protein oxidants, folding catalysts, and mutant cells provide insight into the mechanism of oxidative protein folding in vivo. This insight promises new strategies for more efficient protein production.  相似文献   

12.
13.
Proteolipid involvement in human erythrocyte membrane function   总被引:9,自引:0,他引:9  
  相似文献   

14.
A new set of statistical expressions describing the reformation of disulfide bonds from SH groups is proposed. The results of the statistical calculations of disulfide bond reformation are discussed in terms of protein folding.  相似文献   

15.
16.
17.
Camel erythrocyte membranes are distinguished by some unique properties of stability and composition. Notable is their abundance in proteins (protein: lipid ratio of 3 : 1). Membrane proteins of camel erythrocytes were compared with those of human erythrocytes, which have been intensively investigated. Proteins were extracted with various aqueous media (EDTA, alkaline or high ionic strength) and with ionic and non-ionic detergents and were analyzed by gel electrophoresis. In membranes of camel erythrocytes, the peripheral proteins constitute, proportionally, a much smaller fraction of total proteins than in the human erythrocyte, while their distribution is identical per unit of surface area. The camel erythrocyte membrane is particularly rich in integral proteins and in intramembranous particles. The proteins in this membrane are more closely organized than in the human system, as revealed by crosslinking and freeze-etching studies. It is proposed that protein-protein interaction of integral proteins, presumably constituting an “integral skeleton”, is a dominant structural feature stabilizing the camel erythrocyte membrane.  相似文献   

18.
Human erythrocytes were irradiated with heavy ions of energies between 4 and 18 MeV/u having linear energy transfer (LET) values between 92 and 14000 keV/µm. Hemolysis has been studied as a macroscopic parameter for membrane damage and changes of the fluidity as a more microscopic parameter. The membrane fluidity changed in a characteristic dose-dependent manner as detected by electron spin resonance employing 12-doxylstearic acid methyl ester spin label (SL 12). Lysis cross sections and RBE values were determined from dose effect curves. The results demonstrate a high hemolytic efficiency of heavy ions compared to X rays. With increasing LET values the measured relative biological efficiency (RBE) values increase continuously. In the complete LET range the cross sections formed one common curve as function of LET and no saturation effects are observed. This is in direct contrast to other biological endpoints such as cell inactivation or DNA damage.  相似文献   

19.
20.
We previously demonstrated that a heterotypic complex of the two rat asialoglycoprotein receptor subunits was assembled during cell-free translation (Sawyer, J. T., and D. Doyle. 1990. Proc. Natl. Acad. Sci. USA. 87:4854-4858). We have characterized this system further by analyzing polypeptide interactions under both reducing and oxidizing translation conditions. This report shows that the complex represents a heterogeneous interaction between reduced membrane proteins rather than a specific oligomeric structure. In the reduced state membrane proteins interact in this system to form aggregates of diverse size and composition. The aggregated nascent polypeptides interact with the immunoglobulin heavy chain binding protein but this protein is not an integral component of the aggregate. Aggregation occurs via the exoplasmic domain, rather than the transmembrane domain, and the folding of this domain by the formation of intramolecular disulfides, prevents the interaction from occurring. Additionally, the folded molecules containing intramolecular disulfides lack high affinity binding activity and thus appear to resemble the earliest folding intermediates seen in vivo (Olson, J. T., and M. D. Lane. 198. FASEB (Fed. Am. Soc. Exp. Biol.) J. 3:1618-1624). These results lead us to suggest that the formation of intramolecular disulfides during early biogenesis serves to prevent nonspecific associations between nascent polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号