首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Porcine plasma fibronectin and its functional four fragments produced by cathepsin B digestion were examined for biological, immunochemical and biochemical properties. Native fibronectin, 150-kDa and 130-kDa fragments exhibited similar cell attachment-promoting activity to each other. In an Ouchterlony double immunodiffusion system, these three polypeptides formed a precipitin line with anti-fibronectin antiserum, while the 50-kDA and 30-kDa fragments did not. The 150-kDa and 130-kDa fragments contained free sulfhydryl(s). The glycopeptide fractions were prepared by pronase digestion of porcine and human plasma fibronectin, and radiolabeled with [14C]acetic anhydride. The results of affinity chromatography with concanavalin A and lentil lectin immobilized on agarose indicated that the porcine glycopeptide fraction was different from the human fraction in that a larger part (58%) of the former was bound to lentil lectin. About 90% of this lentil lectin-reactive glycopeptides lost this reactivity upon α-L-fucosidase digestion. The glycopeptide fractions were also prepared from three carbohydrate-containing domains. Less than 30% of the radioactivity of the glycopeptide fractions of 150-kDa and 130-kDa fragments was retained on the lentil lectin-agarose, while about 90% of that from the 50-kDa fragment was retained. These results indicate that porcine plasma fibronectin has characteristics very similar to those of human plasma fibronectin and others, but is unique in that it contains fucosylated carbohydrate chains which unevenly distribute through functional domains.  相似文献   

2.
Monocytes and lymphocytes form a second wave of infiltrating blood leukocytes in areas of tissue injury. The mechanisms for monocyte accumulation at these sites are not completely understood. Recently, however, fragments from extracellular matrix proteins including collagen, elastin, and fibronectin have been shown to induce monocyte chemotaxis. In this report we demonstrate that chemotactic activity for human monocytes is expressed when a 120-kDa fragment containing the RGDS cell-binding peptide is released from intact fibronectin or from larger fibronectin fragments. Monocytes, either from mononuclear cell Ficoll-Hypaque preparations (10-20% monocytes, 89-90% lymphocytes) or from elutriation preparations (95% monocytes, 5% lymphocytes), but not lymphocytes, migrated toward 120-kDa fragment preparations (10(-7) M) in blind-end chambers when the cells were separated from the chemoattractant by a 5-micron pore polycarbonate filter either alone or overlying a 0.45-micron pore nitrocellulose filter. Neutrophils migrated toward zymosan-activated serum but not toward 10(-5)-10(-8) M concentrations of the 120-kDa fragment. Intact fibronectin had no chemotactic activity for human monocytes. Fibronectin was isolated from citrated human plasma by sequential gelatin-Sepharose affinity and DEAE ion-exchange chromatography in the presence of buffers containing 1 mM phenylmethylsulfonyl fluoride to prevent fragmentation. Controlled enzymatic digestion with thermolysin cleaved fibronectin into 30 kDa fibrin, 45 kDa collagen, and 150/160-kDa cell and heparin domains. Upon prolonged digestion, purified 150/160-kDa fragments were cleaved into 120-kDa cell and 30/40-kDa heparin-binding fragments. Even though the intact fibronectin molecule, the 150/160-kDa fragments, and the 120-kDa fragment, have cell binding activity for Chinese hamster ovary fibroblasts, only the 120-kDa fragment expressed chemotactic activity for human monocytes. Thus, the 120-kDa fibroblastic cell-binding fragment contains a cryptic site for monocyte chemotaxis which is expressed upon enzymatic cleavage of fibronectin.  相似文献   

3.
The extracellular matrix of cultured human lung fibroblasts contains one major heparan sulfate proteoglycan. This proteoglycan contains a 400-kDa core protein and is structurally and immunochemically identical or closely related to the heparan sulfate proteoglycans that occur in basement membranes. Because heparitinase does not release the core protein from the matrix of cultured cells, we investigated the binding interactions of this heparan sulfate proteoglycan with other components of the fibroblast extracellular matrix. Both the intact proteoglycan and the heparitinase-resistant core protein were found to bind to fibronectin. The binding of 125I-labeled core protein to immobilized fibronectin was inhibited by soluble fibronectin and by soluble cold core protein but not by albumin or gelatin. A Scatchard plot indicates a Kd of about 2 x 10(-9) M. Binding of the core protein was also inhibited by high concentrations of heparin, heparan sulfate, or chrondroitin sulfate and was sensitive to high salt concentrations. Thermolysin fragmentation of the 125I-labeled proteoglycan yielded glycosamino-glycan-free core protein fragments of approximately 110 and 62 kDa which bound to both fibronectin and heparin columns. The core protein-binding capacity of fibronectin was very sensitive to proteolysis. Analysis of thermolytic and alpha-chymotryptic fragments of fibronectin showed binding of the intact proteoglycan and of its isolated core protein to a protease-sensitive fragment of 56 kDa which carried the gelatin-binding domain of fibronectin and to a protease-sensitive heparin-binding fragment of 140 kDa. Based on the NH2-terminal amino acid sequence analyses of the 56- and 140-kDa fragments, the core protein-binding domain in fibronectin was tentatively mapped in the area of overlap of the two fragments, carboxyl-terminally from the gelatin-binding domain, possibly in the second type III repeat of fibronectin. These data document a specific and high affinity interaction between fibronectin and the core protein of the matrix heparan sulfate proteoglycan which may anchor the proteoglycan in the matrix.  相似文献   

4.
The complete amino acid sequence of a DNA- and heparin-binding domain isolated by limited thermolysin digestion of human plasma fibronectin has been obtained. The domain contains 90 amino acids with a calculated molecular weight of 10,225. The apparent molecular mass of this domain is 14 kDa when analyzed by sodium dodecyl sulfate-gel electrophoresis. The anomalously high molecular size estimation may be due to the inaccuracy of this method in the low range. The structure was established from microsequence analysis of the chymotryptic, tryptic, and Staphylococcus aureus protease peptides. The molecular ion of each of the chymotryptic peptides was obtained by fast atom bombardment mass spectrometry. The domain has a preponderance of basic residues with a net charge of +5 at neutral pH. The basic nature of the domain may account for its affinity for the polyanions, DNA and heparin. The predicted secondary structure is beta-sheet, in common with all of the type III internal sequence homology structures obtained for fibronectin so far. The location of the domain in fibronectin was made possible by limited thermolysin digestion and identification of the fragments and by comparison of the sequence of the 14-kDa fragment with the partial structure of bovine plasma fibronectin. The domain comprises residues 585-675 and defines a region immediately adjacent to the collagen-binding domain. Numbering domains beginning at the amino terminus, this domain is Domain III after the fibrin/heparin/actin/S. aureus binding Domain I and the collagen-binding Domain II. The domain was obtained from a larger precursor (56 kDa) which bound heparin, DNA, and gelatin. Further digestion of the 56-kDa fragment gave rise to a 40-kDa fragment which only bound gelatin, and a 14-kDa fragment which only bound heparin or DNA. The 14-kDa fragment (Domain III) marks the beginning of the type III homology region in fibronectin, for there may be up to 15 repeats of 90 amino acids. The size of this domain corresponds to one repeat of 90 amino acids and it has some sequence homology to the other type III sequences found thus far in fibronectin.  相似文献   

5.
Fibronectin from human plasma and its 180 kDa fragment which retained collagen-binding, cell-attachment and heparin-binding activities, were studied by velocity centrifugation and 1H-NMR methods. The fibronectin hydrodynamic radius strongly increased at pH 11 while the hydrodynamic properties of the fragment did not change noticeably. 1H-NMR spectroscopy also showed differences in the molecular properties of fibronectin and its 180 kDa fragment. Under physiological conditions the structure of fibronectin differs from that of its 180 kDa fragment. At pH 11 and in 4 M urea no differences in their structures are observed. It is suggested that interdomain and intersubunit interactions play an important role in maintaining the native conformation of intact fibronectin.  相似文献   

6.
Tripeptidyl peptidase II (TPP II) is a large intracellular exopeptidase with an active site of the subtilisin type. Affinity-purified hen antibodies against human erythrocyte TPP II cross-reacted with fibronectin in an immunoblot analysis. Furthermore, antibodies against human fibronectin cross-reacted with TPP II. Antibodies against a 65 kDa cell-binding fragment of fibronectin specifically reacted with TPP II, whereas antibodies against the collagen-binding domain, the main heparin-binding domain or the N-terminal fibrin-binding domain did not react. Moreover, the affinity-purified antibodies against TPP II reacted with a 105 kDa cell-binding fragment of fibronectin but not with the fibrin-binding domain or the collagen-binding domain. When native TPP II was dissociated into smaller units through dialysis against a dilute Tris buffer, it could be digested by chymotrypsin into three stable fragments of 70 kDa, 42 kDa and 20 kDa. It could be demonstrated that the 42 kDa fragment was specifically recognized by antibodies against the 65 kDa cell-binding fragment of fibronectin. Furthermore, labelling with di-[3H]isopropyl phosphorofluoridate and N-terminal sequence determination showed that the 70 kDa fragment contained the active-site serine residue. In conclusion, our findings suggest that one domain of the TPP II molecule bears structural resemblance to a cell-binding fragment of fibronectin.  相似文献   

7.
Fibronectin was isolated from porcine plasma by affinity chromatography with gelatin-linked Sepharose 4B. Porcine fibronectin had a chemical composition similar to those of human and other fibronectins and reacted with antiserum raised against human fibronectin. It showed hemagglutination activity with trypsin-treated rabbit erythrocytes, though the activity was far less than that of human fibronectin. Porcine plasma fibronectin consisted of two subunit chains of about 230,000-daltons linked by disulfide bonds(s). Limited proteolysis of this protein with porcine liver cathepsin B yielded five major fragments which were investigated by affinity chromatography with gelatin- and heparin-linked Sepharose 4B. One fragment (Mr = 50,000) was bound to gelatin but not to heparin, while the remaining four were bound to heparin but not to gelatin, suggesting that plasma fibronectin takes a discrete domain structure with respect to interaction with these two macromolecules. The three larger heparin-binding fragments, Mr = 175,000, 150,000, and 130,000 were eluted with different concentrations of a mixture of NaCl and urea from the heparin-column, suggesting that they have different interactions with heparin, the 130,000-dalton fragment being the one with the strongest interaction. After reduction with 2-mercaptoethanol, the 175,000-dalton fragment was converted to the 150,000-dalton region fragment, which, together with the unchanged 150,000-dalton fragment, appeared to be equivalent in amount to the 130,000-dalton fragment. This finding suggests that the 150,000- and 130,000-dalton fragments may have originated from different subunit chains. Since the 175,000-dalton fragment was not produced by cathepsin B digestion of fibronectin which had been treated with plasmin, it was concluded that the 175,000-dalton fragment contained interchain disulfide bond(s) which had linked the native subunit chains. These results suggest that porcine plasma fibronectin has non-identical subunit chains composed of domains which differ in interaction with heparin and in susceptibility to cathepsin B.  相似文献   

8.
Limited proteolysis of buffalo plasma fibronectin (FN) by thermolysin yielded four gelatin-binding fragments of which, the major 59 kDa fragment, GBF1, was isolated by gelatin-Sepharose and heparin-Sepharose affinity columns. GBF1 appeared during early phase of thermolysin digestion and remained intact even after 4 hr of digestion. GBF1 may be similar to 56 kDa gelatin-binding fragment of FNs from human and hamster plasma. But, it is more resistant to thermolysin cleavage. The fragment binds to heparin with low affinity. On the basis of the structure of human plasma FN, the modular structure of GBF1 may be given as: 6Fn1 1Fn2 2Fn2 7Fn1 8Fn1 9Fn1 1Fn3. Biophysical properties of GBF1 suggest an expanded native conformation. The interaction of the fragment with gelatin is pH-dependent and independent of NaCl concentration.  相似文献   

9.
The N-terminal 70-kDa fragment of human plasma fibronectin, purified from a cathepsin D digest, is characterized by lack of stability. It is processed proteolytically during incubation in the presence of Ca2+ into 27-kDa N-terminal heparin-binding and 45-kDa collagen-binding domains. The N-terminal residue in the 27-kDa fragment was blocked as in native fibronectin. The 45-kDa fragments began with the sequences AAVYQP, AVYQP and VYQP (residues 260, 261, 262-265 of fibronectin) that correspond to the beginning of the collagen-binding domain. In the presence of Ca2+ the purified 27-kDa fragment underwent further processing finally leading to the cleavage of the bond K85-D86 and to the simultaneous appearance of a specific proteolytic activity. Inhibition studies suggests that the newly generated enzyme is a Ca(2+)-dependent serine proteinase. Among all assayed matrix proteins, the newly generated enzyme cleaves native fibronectin and its fragments. It is proposed that this fibronectinase may originate from the N-terminal domain of fibronectin.  相似文献   

10.
Human plasma fibronectin aggregates in solution and is thought to form fibrils on cell surfaces, perhaps by self-associating and by interacting with other components such as proteoglycans. We have localized the self-association domains by testing the ability of various fragments of fibronectin to interact with each other. Complexation between fluorescamine-labeled fragments and unlabeled fragments or whole molecules was assessed by gel filtration high-performance liquid chromatography. The fragments studied included nonoverlapping fragments that are situated on the fibronectin polypeptide chain in the following order, beginning from the amino terminus: the 29-, 50-, 120-, 35-, and 25-kDa fragments, as well as multiple-domain fragments of 72 kDa containing the 29- and 50-kDa segments, a fragment of 150 kDa containing the 120- and 35-kDa segment, a fragment of 190 kDa containing the 120- and 35-kDa segments, a fragment of 190 kDa containing the 50-, 150-, and 25-kDa segments, and a 45-kDa fragment containing the 35-kDa segment. The amino-terminal 29-kDa fragment bound to the carboxyl-terminal heparin-binding (Hep II) 35-kDa fragment as well as the 150- and 190-kDa fragments that contain the 35-kDa segment. On the other hand, carboxyl-terminal 35- and 45-kDa Hep II containing fragments bound to each other as well as to amino-terminal 29- and 72-kDa fragments and to the 190-kDa fragment. Further, the 25-kDa carboxyl-terminal fibrin-binding fragment bound the 190-kDa fragment, the only fragment containing the 25-kDa segment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Fluorescein isothiocyanate conjugated human plasma fibronectin, 70-kDa collagen-binding, 60-kDa central, 60-kDa heparin-binding, 180-kDa heparin, collagen-binding fibronectin fragments and gelatin were used to study extracellular fibronectin matrix formation. Exogenous fibronectin, gelatin, 70-kDa collagen-binding and 180-kDa heparin, collagen-binding fragments were shown to be able to bind specifically to preexisting extracellular matrix of living fibroblasts. The results suggest that: (i) Fibronectin matrix formation may occur through a self-assembly process; (ii) the NH2-terminal part of fibronectin is responsible for fibronectin-fibronectin interaction during fibronectin fibril formation; (iii) plasma fibronectin may be the source for tissue fibronectin.  相似文献   

12.
Interaction of exogenous fibronectin with the basement membrane-like PYS-2 cell matrix, lacking fibronectin and hyaluronic acid but containing heparan sulfate proteoglycan, was studied in vitro. Both human plasma fibronectin and fibronectin in fetal calf serum bound to PYS-2 matrix; also, fragments of fibronectin containing heparin-binding domains but lacking the collagen-binding domain bound to the matrix. In immunoelectron microscopy the bound fibronectin was found as 20-40 nm globules or patches. Distribution of fibronectin differed from that of laminin and correlated best with that of heparan sulfate proteoglycan. The results suggest that the binding of fibronectin to basement membrane matrices is not due to random adherence but involves specific interactions with other components.  相似文献   

13.
Limited proteolysis of porcine plasma fibronectin by the 56 kDa proteinase (56K proteinase) (EC 3.4.24.4) from Serratia marcescens released six polypeptides: a 27 kDa peptide, the heparin-binding domain which comprises the NH2-terminal end; a 50 kDa peptide, a mid-molecule that mediates binding to gelatin or collagen; a 160 kDa peptide, that contained the heparin-binding domain with cell-spreading activity; and a 140 and a 20 kDa peptide which released from the 160 kDa peptide. Each fragment was purified and characterized by its chemical and biological properties, and it was found that they were respectively different domains. Both the 160 and the 140 kDa peptide contained one cysteine per mole of peptide. The 160 kDa peptides were connected by a 6 kDa peptide, which was present at the COOH-terminal end of the molecule and was biologically inactive. Only 6 kDa peptide contained a disulfide bond and produced 3 kDa peptide after reduction, whereas other fragments did not change with or without reduction on SDS-polyacrylamide gel electrophoresis. NH2-terminal sequence analyses of the released peptides showed that the 56K proteinase cleaved the fibronectin between the Arg-Thr (located at two different sites), Leu-Ser and Gln-Glu bonds. Out of 118 Arg residues, there are nine sequences containing Arg-Thr, and two of them near or at an interdomain location (at Arg 259 and 2239) were cleaved. Out of 124 Leu residues, there are 11 Leu-Ser sequences and only one, at 687, was cleaved. The above fragments with functional domain activity could be aligned according to the previously reported amino-acid sequence of human or bovine plasma fibronectin. The treatment of fibroblast cells by the 56K proteinase resulted in loss of morphological integrity and extracellular matrix.  相似文献   

14.
The decapacitating fraction of human seminal plasma, which strongly interacts with concanavalin A, is constituted by high mannose-type N-linked glycoproteins, most of them of less than 44 kDa. Each component with apparent molecular mass of 30, 18, and 17 kDa respectively, as judged by SDS-PAGE, was submitted to "in gel" digestion with trypsin followed by HPLC separation of the peptides and sequencing. They were characterized at microscale as gp17, an aspartyl protease that possibly contributes to liquefaction of the seminal plasma coagulum, two fragments of human acid phosphatase (17 and 30 kDa, respectively), and a 17-kDa fragment of carboxypeptidase E. Neither the fragments of prostatic acid phosphatase nor that of carboxypeptidase E had been described before in the human seminal fluid. Very weak bands, of apparent molecular masses 44 and 52 kDa, are consistent with presence of small amounts of parent compounds, prostatic acid phosphatase and carboxypeptidase E.  相似文献   

15.
L H Hahn  K M Yamada 《Cell》1979,18(4):1043-1051
Cellular fibronectin is a major cell surface glycoprotein that can mediate the adhesion of cells to collagen in vitro. To analyze its mechanism of action, we have undertaken experiments to isolate fragments of fibroblast fibronectin that retain different active sites. In this paper, we describe the purification of three chymotryptic fragments with apparent molecular weights of 40,000, 160,000 and 205,000 from chicken cellular fibronectin. These fragments were electrophoretically pure and retained different biologically active sites, as determined by a series of bioassays and competitive inhibition experiments. The 40K fragment was identified as the collagen-binding fragment. The 160K fragment was found to contain the cell surface-binding site(s) of cellular fibronectin. The 205K fragment contained both collagen-binding and cell surface-binding sites, and apparently represents the sum of the 40K and 160K fragments. When native fibronectin is cleaved to the 205K fragment, a polypeptide region containing all interchain disulfide bonds is lost. This alteration was accompanied by decreased hemagglutinating activity and loss of the capacity to restore a normal morphology to transformed cells, whereas cell attachment to collagen and cell spreading activities remained. Our results directly support the idea that the fibronectin molecule consists of separate structural domains containing different biological characteristics.  相似文献   

16.
The effects of fibronectin and fragments of its limited proteolysis by plasmin on the proliferative activity of human embryo fibroblasts in culture were studied. It was found that native fibronectin and its fragments with Mr greater than or equal to 120 kD do not exert either a stimulating or inhibiting influence, whereas the 15-43 kD fragments significantly stimulate cell proliferation. The stimulating effect increases with a rise in the fragment concentration, reaching a maximum at 12-25 micrograms/ml and decreases at their higher concentrations. The preparation of proliferation-stimulating fragments contains no proteinases admixtures that are active at neutral pH and does not possess any intrinsic proteolytic activity. The proliferation-stimulating activity does not change after removal of collagen-binding fragments.  相似文献   

17.
E M Click  G Balian 《Biochemistry》1985,24(23):6685-6696
The domain structure of human plasma fibronectin was investigated by using heparin-binding and antibody reactivity of fibronectin and its proteolytically derived fragments. Digestion of human plasma fibronectin with a combination of trypsin and cathepsin D produced six major fragments. Affinity chromatography showed that one fragment (Mr 45 000) binds to gelatin and three fragments (Mr 31 000, 36 000, and 61 000) bind to heparin. The 31K fragment corresponds to NH2-terminal fragments isolated from other species. The 36K and 61K fragments are derived from a region near the C-terminus of the molecule and appear to be structurally related as demonstrated by two-dimensional peptide maps. A protease-sensitive fragment (Mr 137 000), which binds neither gelatin nor heparin but which has been shown previously to be chemotactic for cells [Postlethwaite, A. E., Keski-Oja, J., Balian, G., & Kang, A. H. (1981) J. Exp. Med. 153, 494-499], separates the NH2-terminal heparin- and gelatin-binding fragments from the C-terminal 36K and 61K heparin-binding fragments. A monoclonal antibody to fibronectin that recognized the 61K heparin-binding fragment was used to isolate a sixth fragment (Mr 34 000) that did not bind to heparin or gelatin and that represents a difference between the 61K and 36K heparin-binding fragments. Cathepsin D digestion produced an 83K heparin-binding, monoclonal antibody reactive fragment that contains the interchain disulfide bond(s) linking the two fibronectin chains at their C-termini. The data indicate that plasma fibronectin is a heterodimeric molecule consisting of two very similar but not identical chains (A and B). In contrast, enzymatic digestion of cellular fibronectin produced a 50K heparin-binding fragment lacking monoclonal antibody reactivity which suggests that the cellular fibronectin subunit is similar to the plasma A chain in enzyme susceptibility but contains a larger heparin-binding domain. A model relating the differences in the three fibronectin polypeptides to differences in published cDNA sequences is presented.  相似文献   

18.
A single type-II domain has been isolated by limited proteolysis of the collagen-binding bovine seminal fluid protein, PDC-109. The 45-residue fragment corresponding to the second type-II domain of the parent molecule was found to have retained affinity for immobilized collagen, indicating that this minidomain carries critical regions of the collagen-binding site. Studies on various fragments of fibronectin have also implicated the two type-II units of this molecule in collagen-binding. In the present work we have found that type-II domains of human fibronectin, expressed in Escherichia coli as beta-galactosidase fusion proteins, bind specifically to immobilized collagen.  相似文献   

19.
Streptococcal fibronectin binding protein I (SfbI) mediates adherence to and invasion of Streptococcus pyogenes into human epithelial cells. In this study, we analysed the binding activity of distinct domains of SfbI protein towards its ligand, the extracellular matrix component fibronectin, as well as the biological implication of the binding events during the infection process. By using purified recombinant SfbI derivatives as well as in vivo expressed SfbI domains on the surface of heterologous organism Streptococcus gordonii , we were able to dissociate the two major streptococcal target domains on the human fibronectin molecule. The SfbI repeat region exclusively bound to the 30 kDa N-terminal fragment of fibronectin, whereas the SfbI spacer region exclusively bound to the 45 kDa collagen-binding fragment of fibronectin. In the case of native surface-expressed SfbI protein, an induced fit mode of bacteria–fibronectin interaction was identified. We demonstrate that binding of the 30 kDa fibronectin fragment to the repeat region of SfbI protein co-operatively activates the adjacent SfbI spacer domain to bind the 45 kDa fibronectin fragment. The biological consequence arising from this novel mode of fibronectin targeting was analysed in eukaryotic cell invasion assays. The repeat region of SfbI protein is mediating adherence and constitutes a prerequisite for subsequent invasion, whereas the SfbI spacer domain efficiently triggers the invasion process of streptococci into the eukaryotic cell. Thus, we were able to dissect bacterial adhesion from invasion by manipulating one protein. SfbI protein therefore represents a highly evolved prokaryotic molecule that exploits the host factor fibronectin not only for extracellular targeting but also for its subsequent activation that leads to efficient cellular invasion.  相似文献   

20.
The carboxy terminal fragment of human plasma fibronectin has been isolated after tryptic digestion and separation by DEAE-cellulose chromatography and gel filtration on Sephadex G-50. It has a molecular weight of 6,000 which changes to 3,000 after reduction indicating that the fragment is a dimer. We have determined the amino acid sequence of the 6kDa fragment and showed that it contains 26 residues including two half-cystines which form two interchain disulfide bridges. The 6kDa fragment is not phosphorylated as in bovine fibronectin although its amino acid sequence is identical to that reported for bovine plasma fibronectin. When compared to the sequence deduced from a rat cDNA, one amino acid substitution can be found. It appears that the carboxyl end of fibronectin is highly conserved among species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号